

Landquart, le 7 juillet 2016

Gestion du système ZBMS

Calcul des courbes de freinage dynamiques des trains d'entreprises ferroviaires qui emploient un contrôle de la marche des trains conforme au standard ZBMS

Version n° 1.1

Entrée en vigueur : 07.07.2016

Numéro de document 21186

Chemin de fer rhétique

Etabli le 07.07.2016

Vérifié

Autorisé

Pierre-Yves Kalbfuss

P-PE-VZ

Martin Kessler

P-PE-VZ

Uwe Hartmann Chef P-PE

Informations sur le document

Version	Date	Auteur	Modifications
1.0	13.05.2016	Pierre-Yves Kalbfuss	Première édition
1.1	07.07.2016	Pierre-Yves Kalbfuss	Chiffre 4.3: complément des commentaires

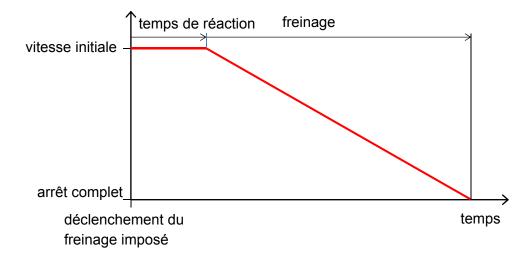
Page 2 07.07.2016

Table des matières

1	Introduction	5
1.1	But	5
1.2	Champ d'application	6
2	Bases	6
2.1	DE-OCF	6
2.2	Calcul du rapport de freinage d'un véhicule	7
2.3	Standard ZBMS	8
2.4	Distance du signal avancé	8
3	Calcul du comportement des freins	9
3.1	Principe	9
3.2	Déclenchement de la traction	9
3.3	Temps de réaction	9
3.3.1	Temps de traversée dans le train	10
3.3.2	Délai d'établissement dans le véhicule	10
3.3.3	Imputation partielle	10
3.4	Freinage	11
3.4.1	Influence de la déclivité	11
3.5	Distance totale de freinage	12
4	Décélération selon la catégorie de freinage	12
4.1	Principe	12
4.2	Méthodologie	13
4.3	Exemples	13
5	Résultats des essais de freins	16
5.1	Essais de freins avec véhicules isolés	16
5.2	Essais de freins avec trains complets	20
6	Conclusions	25

Page 4 07.07.2016

1 Introduction


1.1 **But**

Les caractéristiques de freinage des véhicules de la voie métrique et de la voie spéciale sont fixées conformément aux DE-OCF, DE 52.2. Ces dispositions régaliennes posent les bases du calcul du rapport de freinage et du poids-frein de chaque véhicule.

Un système moderne de contrôle de la marche des trains définit une courbe de freinage qui exclut le franchissement du point d'arrêt prévu. Or les données nécessaires au calcul de cette courbe ne peuvent pas être obtenues directement à partir de la méthode de dimensionnement des freins selon les DE-OCF, DE 52.2. En effet, les analyses des risques et le calcul des courbes de freinage des systèmes modernes de contrôle de la marche des trains s'appuient sur une procédure qui concilie les caractéristiques physiques d'un véhicule ou d'un train entier et le rapport de freinage déterminé selon les DE-OCF.

La procédure de calcul à vérifier est construite sur le principe :

- Après l'activation du freinage imposé, le train roule à vitesse constante pendant le temps de réaction
- Ensuite, le freinage s'exécute avec décélération constante jusqu'à l'arrêt complet.

Le présent document a pour but de prouver l'applicabilité de cette procédure. Il indique les interactions avec les rapports de freinage déterminants pour le service et avec les facteurs d'influence tels que la longueur du train.

Ce document ne sert toutefois pas à vérifier un algorithme employé dans un système déterminé.

1.2 Champ d'application

Ce document est applicable aux tronçons à adhérence des chemins de fer à voie métrique et à voie spéciale. Les calculs de la distance d'immobilisation sont valables pour le domaine de l'adhérence. Les particularités des chemins de fer à crémaillère ne sont pas traitées ici.

2 Bases

2.1 **DE-OCF**

Les dispositions d'exécution de l'ordonnance sur les chemins de fer (DE-OCF), édition du 01.07.2016, contiennent les articles et prescriptions suivants concernant les freins en général et les freins des véhicules moteurs à adhérence en particulier :

Art.	Chapitre	Section	Article
52	Véhicules	Véhicules non interopérables	Systèmes de freinage
76	Exploitation ferroviaire	Formation et conduite des trains	Vitesse
77	Exploitation ferroviaire	Formation et conduite des trains	Freins

Ces articles contiennent un grand nombre de sections qui traitent la conception des freins et leur efficacité. On distingue en principe quatre systèmes de freinage : le frein automatique à effet indirect, le frein de manœuvre à effet direct, le frein d'immobilisation et le frein de sécurité. La plupart du temps, il y a aussi un frein électrique (frein moteur). Les seuls de ces freins qu'il s'agit de considérer dans le contexte qui nous occupe, la surveillance de la vitesse par le contrôle de la marche des trains, sont le frein automatique et les autres systèmes de freinage assimilables au frein de sécurité, quoique le frein de sécurité ne soit que partiellement intégré dans le calcul et seulement dans certains cas (DE 77.2, ch. 4.2).

Le présent document ne traite pas les freins hors calcul ou imputables à certaines conditions seulement. La procédure de calcul des freins à valider repose uniquement sur l'effet du frein automatique.

Dans les DE-OCF (DE 52.2, ch. 4), la distance de freinage se calcule grâce à une formule basée sur le principe suivant :

- course à vitesse constante pendant le délai d'établissement de l'effort de freinage
- freinage jusqu'à l'arrêt complet

Cette formule n'est toutefois qu'approximative. Le coefficient de frottement semelle de frein-roue µk varie avec la vitesse momentanée, en fonction des propriétés des semelles de frein ou des garnitures de frein. L'effort résistant dépend physiquement du carré de la vitesse.

Page 6 07.07.2016

$$X = v_0 \bullet t_n + \frac{\frac{1000}{2} \bullet v_0^2 \bullet (1 + \xi)}{\mu_k \bullet \frac{P}{G} \bullet \frac{\lambda}{100} + w + s}$$

X distance d'arrêt mesurée depuis l'activation du freinage imposé jusqu'à l'immobilisation [m]

v₀ vitesse initiale [m/s]

 t_n temps mort = 0,39• t_1 [s]

temps de remplissage du cylindre de frein jusqu'à 95 % de la pression maximale
[s]

P somme des forces d'application des sabots du véhicule [N]

G masse du véhicule, charge comprise [t]

w résistance au roulement (valeur moyenne) [N/t]

s résistance due à la déclivité, positive en montée, négative sur les pentes [N/t]

μ_k coefficient de frottement semelle-roue (valeur moyenne) [-]

ξ supplément pour les masses rotatives [-]

λ pourcentage de freinage [-]

Les essais de freins effectués ont montré que la plupart des véhicules ont un comportement des freins à décélération pratiquement constante. La décélération momentanée n'augmente que dans la gamme de vitesses la plus faible sur certains types de construction de véhicules en raison du coefficient de frottement croissant entre semelle de frein et roue. Son effet est d'ailleurs positif pour la sécurité (la distance de freinage est, dans la pratique, plus courte que si l'on admet une décélération constante sur toute la gamme de vitesses).

La décélération moyenne d'un véhicule sur tout le freinage diminue avec la vitesse initiale, notamment si le temps de remplissage du cylindre de frein est long. Cette constatation n'est faite que si l'on considère de manière indifférenciée toute la distance de freinage depuis l'activation jusqu à l'immobilisation. Plus la vitesse est faible, plus l'influence du temps de réaction (de l'activation du freinage à un niveau suffisant de pression du cylindre de frein) sur la distance totale de freinage est forte.

2.2 Détermination du rapport de freinage d'un véhicule

LA détermination du rapport de freinage d'un véhicule s'effectue conformément aux DE-OCF, DE 52.2. Les pourcentages de freinage sont déterminés en fonction de la distance mesurée lors des essais de freinage. Ils sont tirés des diagrammes d'évaluation des freins DE 52.2, feuille 9.

Ces essais se déroulent en règle générale avec des véhicules neufs ou fraîchement révisés. L'état de l'appareil de freinage est donc optimal. Or dans l'exploitation ordinaire, l'efficacité de la timonerie de frein peut se détériorer. La salissure inévitable cause des frottements supplémentaires. Même avec des semelles de frein compactes, la force de freinage peut diminuer. En revanche, les essais avec des semelles de frein

neuves et des roues fraîchement profilées donnent des distances de freinage plus longues qu'avec des semelles de frein rodées.

Les valeurs tirées directement des diagrammes d'évaluation des freins donnent le rapport de freinage effectif dans l'état momentané du véhicule. L'OCF stipule que l'action du frein ne doit pas être entravée par l'usure (OCF, art. 52, al. 3). Il faut en déduire que les inscriptions sur le véhicule doivent être corrigées de manière que le rapport de freinage calculé soit atteint en tout temps en exploitation ordinaire. Il revient à l'entreprise de transport ferroviaire de fixer un facteur de correction résultant des conditions d'emploi et du standard d'entretien. Cela permet de tenir compte de la marge de variation des distances de freinage entre les véhicules de la même série, en fonction de l'état momentané de l'entretien.

2.3 Standard ZBMS

Pour calculer correctement les courbes de freinage et les distances de freinage dans l'équipement du véhicule, il faut projeter les caractéristiques de freinage correspondantes du véhicule.

Seule la courbe de freinage du serrage imposé est déterminante pour la sécurité et doit garantir dans tous les cas l'arrêt complet avant le lieu d'arrêt projeté en cas de conduite erronée du mécanicien de locomotive. Les courbes d'avertissement et, si elles sont projetées, les courbes de freinage du serrage par le système servent d'auxiliaire au mécanicien de locomotive et ne doivent pas couvrir d'exigences sécuritaires.

Pour cette raison, seul le comportement des freins en cas de serrage imposé doit être validé.

2.4 Distance du signal avancé

La distance du signal avancé est en principe fixée compte tenu d'un serrage à fond, que le mécanicien de locomotive active à hauteur du signal avancé. L'arrêt de tous les trains après un serrage imposé par le contrôle de la marche des trains doit toutefois se faire sur une distance plus courte : en effet, le système travaille en arrière-plan et ne doit pas intervenir en cas de comportement correct du mécanicien de locomotive. Or si la distance du signal avancé est trop faible, la courbe de freinage du contrôle de la marche des trains induira une réduction de vitesse dès avant le signal avancé. Dans certaines circonstances, ce problème peut ne se poser que pour les rapports de freinage faibles. Une distance du signal avancé trop faible doit être corrigée soit par déplacement du signal avancé soit par réduction de la vitesse autorisée sur la ligne à l'approche du signal avancé.

La distance du signal avancé n'influence pas le comportement des freins des véhicules. Il n'est donc pas nécessaire de la traiter plus en détail ici.

Page 8 07.07.2016

3 Calcul du comportement des freins

3.1 Principe

Le freinage, de l'activation d'un freinage automatique jusqu'à l'immobilisation, est séquencé comme suit :

- Déclenchement de la traction
- Temps de réaction
- Freinage.

Chaque processus doit être considéré séparément car les caractéristiques varient d'un véhicule ou d'une longueur du train à l'autre. Ce principe s'applique aussi bien au véhicule isolé qu'au train complet.

3.2 Déclenchement de la traction

Pour le calcul des courbes de freinage, on admet que le véhicule moteur accélère au maximum jusqu'au déclenchement de la traction, ce qui oblige à devoir activer le serrage imposé très tôt. L'effort de traction d'un véhicule moteur électrique est immédiatement interrompu lors de l'activation du serrage imposé, par exemple en déclenchant l'interrupteur principal ou en bloquant les impulsions du convertisseur. Il est possible dans ce cas, lors du dimensionnement du contrôle de la marche des trains, de fixer le paramètre du délai de déclenchement de la traction de la traction, c'est-à-dire le délai jusqu'au début de l'établissement de l'effort de freinage, à la plus faible valeur possible. Il en va de même pour tous les modèles de freinage projetés.

Quant aux véhicules dont il n'est pas possible d'interrompre la traction immédiatement (véhicules thermiques), il ne faut pas négliger cette valeur, laquelle doit être déterminée individuellement dans chaque cas.

Lorsque plusieurs véhicules desservis individuellement sont intégrés dans un train, le déclenchement immédiat de la traction par le contrôle de la marche des trains n'a lieu que dans le véhicule moteur menant du train. Pour les autres véhicules moteurs, il n'a lieu que lorsque la baisse de pression dans la conduite générale ou une montée de pression dans le cylindre de frein est détectée.

Le chemin parcouru pendant le déclenchement de la traction n'est pas pris en compte dans les calculs présentés dans le présent document. Il doit être considéré au cas par cas.

3.3 Temps de réaction

La temporisation de l'activation du freinage jusqu'à la pleine puissance de freinage se calcule en additionnant le délai d'établissement de l'effort de freinage dans chaque véhicule et le temps de propagation jusqu'en queue du train. Pendant ce laps de temps, le modèle de freinage calcule une vitesse constante.

La force de freinage s'établit progressivement après l'activation du freinage avec la montée de la pression dans les cylindres de frein jusqu'au remplissage complet de ceux du dernier wagon. C'est pourquoi le temps de réaction est la somme des délais de propagation et d'établissement calculés.

3.3.1 Délai de propagation dans le train

Le délai de propagation dans le train est le laps de temps de l'activation du serrage imposé jusqu'à ce que la pression de la conduite générale s'abaisse au dernier véhicule de sorte que les freins réagissent. En d'autres termes, cela signifie un abaissement de 0,5 bar par rapport à la pression nominale, ou de 15 cmHg par rapport à la pression de relâchement pour le frein à vide.

Lors des essais, il faut vider la conduite générale avec la valve de serrage imposé. Le temps de propagation peut être beaucoup plus long que lors d'un serrage rapide. C'est en effet le cas si la section active de la valve de serrage imposé n'est pas optimale ou, sur un ancien véhicule, si l'alimentation de la conduite générale n'est pas interrompue.

Le délai de propagation peut être déterminé par des essais à l'arrêt avec un train de la longueur maximale.

Le délai de propagation peut être minimalisé grâce à l'emploi d'accélérateurs de vidange ou de valves d'action rapide avec le frein à vide.

3.3.2 Délai d'établissement dans le véhicule

Le délai de remplissage du cylindre de frein à 80 % est plus représentatif que le temps de remplissage complet du cylindre de frein. Le flux d'air est ralenti vers la fin.

Le délai de remplissage peut être déterminé par des essais à l'arrêt avec un véhicule isolé. Lors des essais, la conduite générale peut être vidangée le plus rapidement possible et avec le moyen le plus approprié.

En présence de catégories de véhicules différentes, il faut tenir compte des véhicules dont le délai d'établissement de l'effort de freinage est plus long (par exemple les wagons à marchandises).

3.3.3 Imputation partielle

Comme les cylindres de frein se remplissent progressivement, suivant les circonstances, les délais d'établissement dans chaque véhicule peuvent être partiellement pris en compte. Une décélération se produit déjà avant que la pression du cylindre de frein ait atteint la valeur maximale.

L'influence du temps de réaction sur la distance totale de freinage est proportionnellement plus forte à baisse vitesse qu'aux vitesses élevées. Si l'on sous-estime le temps de réaction, le train roulant à petite vitesse peut avoir besoin, en freinage automatique, d'une plus longue distance de freinage que celle calculée par le contrôle de la marche des trains. Le point de danger pourrait alors être dépassé. Pour cette raison, il

Page 10 07.07.2016

faut vérifier les distances de freinage calculées en imputant partiellement le temps de réaction par des essais de serrages imposés à partir de vitesses faibles.

3.4 Freinage

Les courbes de freinage se calculent sur la base de la décélération moyenne **a** en [m/s²]. Cette décélération moyenne ne doit pas être assimilée au rapport de freinage (pourcentage de freinage). D'après les DE-OCF, art. 52.2, ch. 6.1.1, le principe est le suivant : « Un pourcentage de freinage de 100 équivaut à une décélération moyenne de 1 m/s² obtenue lors d'un freinage à la vitesse initiale de 50 km/h sur une voie horizontale et calculée à partir de cette vitesse et du chemin de freinage ». Ainsi, toute la distance de freinage depuis l'activation du freinage jusqu'à l'arrêt complet est prise en compte. Si le cylindre de frein se remplit en 2,5 s, la décélération qui s'ensuit doit atteindre en moyenne 1,6 m/s² pour respecter la même distance de freinage de 96 m.

La décélération moyenne est considérée comme décélération constante jusqu'à l'immobilisation.

Les paramètres suivants sont valables :

 v_o = vitesse initiale [m/s]

s_b = distance de freinage [m]

a = décélération moyenne [m/s²]

st = montée [‰] (en descente, ce paramètre prend une valeur négative)

La formule est la suivante :

$$a = \frac{v_0^2}{2s_h} + \frac{9.81 \bullet st}{1000}$$

3.4.1 Influence de la déclivité

Lors de la prise en compte de la déclivité, une simplification est introduite dans les calculs :

 $\sin \alpha = tg\alpha$

α = angle d'inclinaison par rapport à l'horizontale [°]

Cette hypothèse permet une simplification essentielle des calculs. Elle aboutit à une variation de 0.3% des valeurs calculées pour les tronçons à adhérence dont les déclivités peuvent aller jusqu'à 80% ou jusqu'à un angle d'inclinaison α de 4.57°. Cette variation est négligeable sur tous les tronçons à adhérence.

Grâce à cette simplification, on peut calculer une décélération résultant de l'accélération de la pesanteur et de la tangente de l'angle d'inclinaison.

$$a_n = \frac{9.81 \bullet st}{1000}$$

 a_n = décélération moyenne [m/s²]

st = montée [‰] (en descente, ce paramètre prend une valeur négative)

Dans ce contexte, il faut veiller au signe (- ou +). Une montée cause un freinage du train, c'est-à-dire une accélération négative. Une descente est enregistrée comme une déclivité négative. Elle cause une accélération du train, qui contrecarre le freinage.

Un train qui freine à plat avec une décélération moyenne de 0,8 m/s²,

- subit une décélération d'environ 1,3 m/s² sur une montée de 50 ‰
- ne subit qu'une décélération d'environ 0,3 m/s² sur une descente 50 ‰. La distance de freinage est plus que doublée par rapport au tronçon plat.

L'influence d'une forte pente sur la distance de freinage est énorme. Mais elle est facile à calculer.

3.5 Distance totale de freinage

La distance totale de freinage représente la somme des distances parcourues durant le temps de réaction et durant le freinage:

$$s_b = v_0 \bullet t_v + \frac{v_0^2}{2 \bullet (a + \frac{9.81 \bullet st}{1000})}$$

 t_v = temps de d'établissement de la force de freinage, somme du délai de propagation dans le train et du délai d'établissement dans les véhicules du convoi [s]

 v_o = vitesse initiale [m/s]

s_b = distance de freinage [m]

a = décélération moyenne [m/s²]

st = montée [‰] (en descente, ce paramètre prend une valeur négative).

4 Décélération selon la catégorie de freinage

4.1 Principe

Le rapport de freinage définit l'efficacité du frein automatique d'un véhicule ou d'un train entier. Le calcul de freinage d'après les prescriptions de circulation établit un rapport de freinage individuellement pour chaque train formé. Une catégorie de freinage est attribuée au train.

Page 12 07.07.2016

La vitesse maximale indiquée dans les tableaux de parcours est fixée d'après la catégorie de freinage, la distance effective des signaux avancés et la déclivité du tronçon.

La catégorie de freinage sert aussi de grandeur de sortie pour calculer la décélération d'un train quelconque.

4.2 Méthodologie

Les distances de freinage selon les diagrammes d'évaluation des freins DE-OCF, DE 52.2, feuille 9, tiennent compte de la distance de freinage d'un véhicule isolé y c. le temps d'établissement pour une déclivité de 0 ‰. À partir de ces diagrammes, on peut attribuer à chaque rapport de freinage une décélération moyenne équivalente. La distance de freinage d'après lesdits diagrammes comprend le temps d'établissement de la force de freinage dans le véhicule isolé. Ce paramètre doit être pris en compte dans le calcul de la décélération. Le calcul doit en principe se fonder sur la vitesse maximale du véhicule sur le réseau concerné.

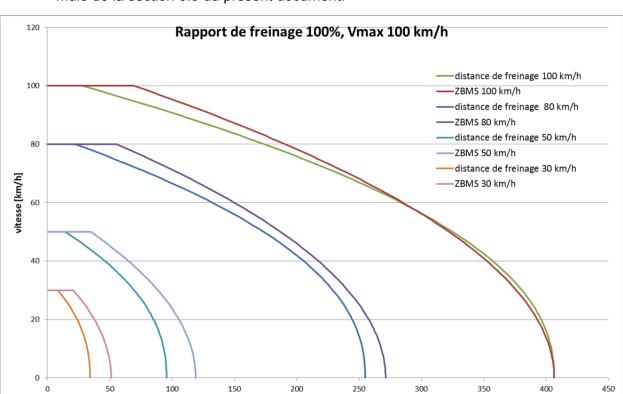
$$a = \frac{{v_0}^2}{2(s - v_0 \times t_0)}$$

a décélération moyenne [m/s2]

 v_0 vitesse initiale [m/s]

 t_0 temps d'établissement [s]

s distance de freinage [m]

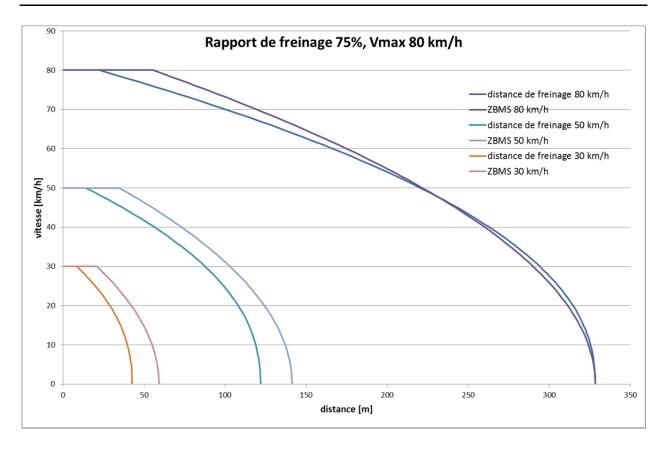

Lorsqu'un train est formé de véhicules différents, la décélération est calculée pour la catégorie de freinage. La vitesse initiale v_0 est définie par la vitesse maximale de la catégorie de freinage sur le réseau concerné. Pour le temps d'établissement t_0 , il faut considérer la valeur de tout le train avec la composition la plus défavorable.

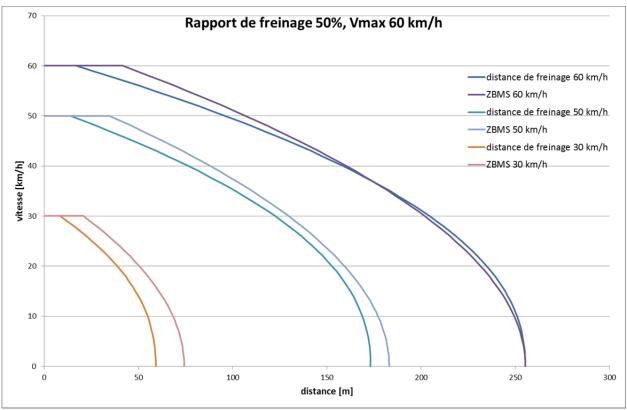
Lorsqu'un freinage s'opère à partir d'une vitesse inférieure à la vitesse maximale du véhicule ou de la catégorie de freinage, on obtient avec cette méthode toujours une distance de freinage plus longue qu'à partir de la même vitesse conformément aux diagrammes d'évaluation des freins. Par conséquent, le freinage imposé avant un point de danger est toujours activé plus tôt que la distance minimale de freinage conformément aux diagrammes d'évaluation des freins. L'arrêt à temps avant le point de danger est garanti à partir de n'importe quelle vitesse initiale.

4.3 Exemples

La distance de freinage conformément aux diagrammes d'évaluation des freins et le calcul correspondant par le contrôle de la marche des trains ont été dessinés pour divers rapports de freinage et vitesses maximales. Le temps de réaction est fixé uniformément à 2,5 s.

Les courbes « distance de freinage » indiquent la distance de freinage calculée à partir des diagrammes d'évaluation des freins DE-OCF, DE 52.2, feuille 9.

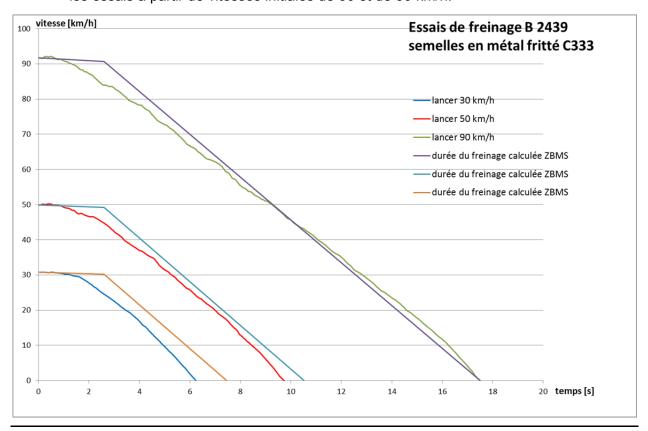

Les courbes « ZBMS » indiquent la distance de freinage calculée au moyen de la formule de la section 3.5 du présent document.


La distance de freinage conformément aux diagrammes d'évaluation des freins est déduite du comportement dynamique d'un wagon équipé de semelles de frein en fonte grise (GG P10). Du fait de la forte hausse du coefficient de frottement des semelles de frein en fonte grise à l'approche de l'arrêt complet, les deux courbes ne sont pas parallèles. Si la vitesse au but se situe entre 10 et 50 km/h, la distance calculée est légèrement plus courte que selon les diagrammes d'évaluation des freins. Un freinage imposé à partir de la vitesse maximale avec une vitesse au but entre 10 et 50 km/h devrait aboutir à une légère survitesse pouvant atteindre environ 5 km/h au seuil de vitesse. Ce dépassement ne doit pas être considéré comme dangereux et ne se produirait qu'avec des trains freinés par des semelles de frein en fonte grise.

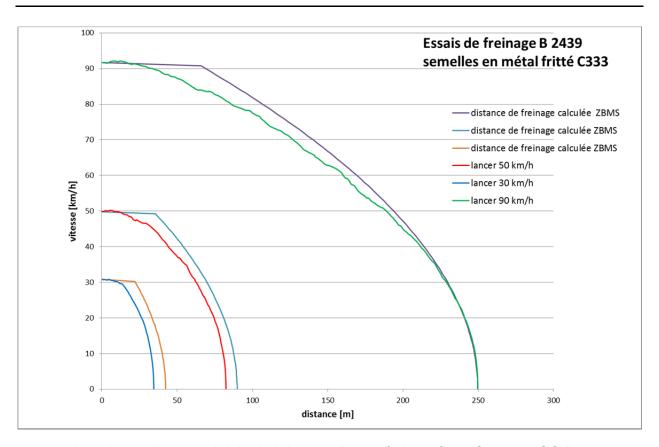
distance [m]

Les distances de freinage conformément aux diagrammes d'évaluation des freins des DE-OCF, DE 52.2, feuille 9, sont respectées par les véhicules, car le rapport de freinage d'un véhicule est déterminé par ces diagrammes. Ces distances de freinage sont toujours plus courtes que celles qui sont calculées au moyen de la formule de la section 3.5 du présent document. Cela permet de garantir qu'après un dépassement de la courbe de surveillance, le freinage automatique induit par le contrôle de la marche des trains garantit l'arrêt sécurisé avant le point d'arrêt visé.

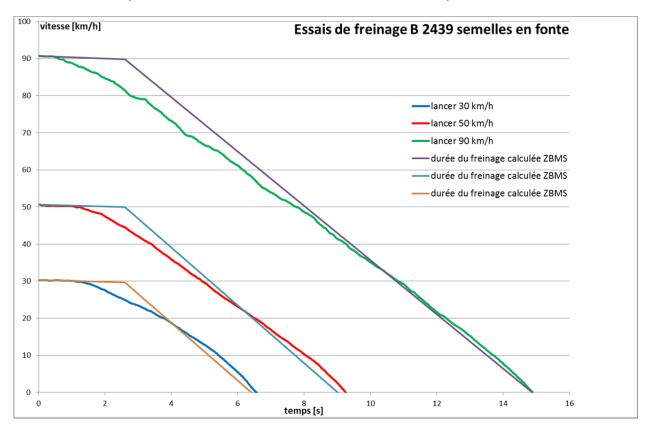
Page 14 07.07.2016

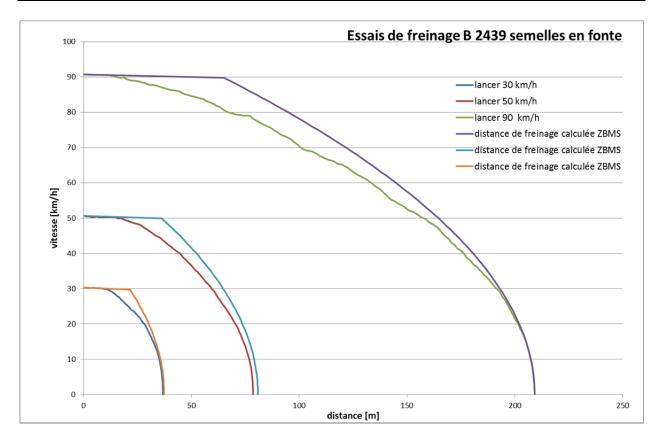

5 Résultats d'essais de freinage

5.1 Essais de freinage avec véhicules isolés

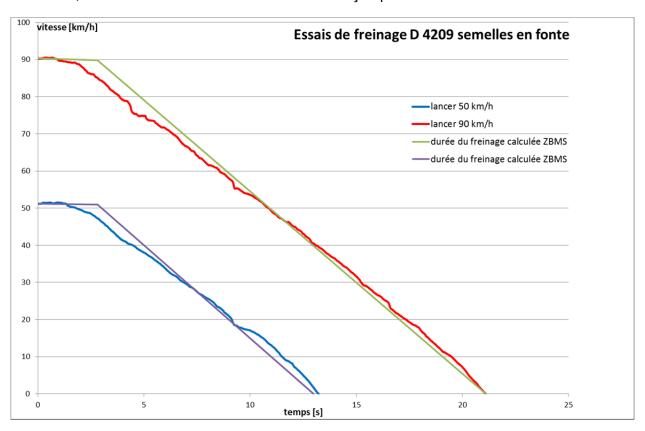

Nous présentons ici les résultats d'essais au lancer avec un véhicule isolé. Des essais au lancer ont eu lieu avec des vitesses initiales de 30, 50 et 90 km/h. Les diagrammes indiquent la courbe des vitesses à partir de l'activation du freinage à fond. Pour plus de clarté, un seul freinage est représenté par vitesse initiale. En fait, les essais ont été réitérés 4 fois chacun et se sont avérés d'une reproductibilité optimale. La courbe des vitesses a été mesurée au moyen d'un radar à partir de l'activation du freinage. Le freinage a été activé manuellement. Un contact à la soupape de frein démarrait simultanément la mesure de la vitesse. Les essais ont été effectués avec des voitures des séries en service :

- B 2439 (EW II) équipé d'un frein à air comprimé commandé par le vide
- D 4209, fourgon équipé d'un frein à vide simple.

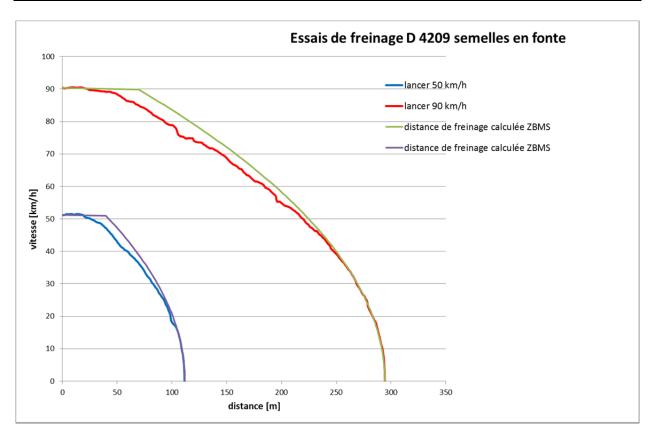

De plus, la courbe de freinage théorique est dessinée telle qu'elle serait calculée par le contrôle de la marche des trains. L'allure d'une courbe est d'abord celle d'une droite légèrement descendante. Elle correspond à la marche avec frein desserré. La légère décélération correspond à la résistance au roulement et à la résistance de l'air ainsi qu'à la montée de 5 ‰ sur le lieu des essais. Le temps de remplissage à 80 % du cylindre de frein du wagon testé s'élève à 2,6 s, après quoi la courbe représente le freinage avec décélération constante jusqu'à l'arrêt complet. Le calcul était basé sur une vitesse maximale de 90 km/h et une décélération de 1,73 m/s². Les mêmes paramètres donnent une distance de freinage légèrement plus longue que celle de la mesure pour les essais à partir de vitesses initiales de 30 et de 50 km/h.



Page 16 07.07.2016



Le même véhicule a été équipé de semelles de frein en fonte Samson (GG P30). Le temps de remplissage à 80 % du cylindre de frein s'élève à 2,6 s. Pour l'essai, le calcul était basé sur une vitesse maximale de 90 km/h et une décélération de 1,73 m/s². Les mêmes paramètres donnent des distances de freinage quasiment identiques sur les essais à partir de vitesses initiales de 30 et de 50 km/h et par calcul.



Le wagon D 4209 équipé d'un frein à vide simple et de semelles de frein en fonte Samson (GG P30) a été lancé à sa vitesse maximale de 90 km/h ainsi qu'à 50 km/h. Les paramètres calculés révèlent un temps de réaction de 2,8 s et une décélération de 1,39 m/s². Les essais ont eu lieu sur un tronçon plat.

Page 18 07.07.2016

Ces essais rendent compte des exemples théoriques établis par calcul à la section 4.2. L'allure des courbes présente des variations :

- Les freinages exécutés à partir d'une faible vitesse initiale donnent des distances de freinage très semblables à celles des courbes de freinage obtenues par calcul.
- Au ch. 4.2, l'application des diagrammes d'évaluation des freins des DE-OCF, DE 52.2, feuille 9, à faible vitesse initiale donne des distances de freinage plus courtes que celles des courbes de freinage obtenues par calcul.

Cet écart s'explique par le fait que les diagrammes d'évaluation des freins sont basés sur un temps de remplissage très court du cylindre de frein ou sur une imputation partielle de ce temps de remplissage. Les diagrammes d'évaluation des freins conformément aux DE-OCF, DE 52.2, feuille 9, ne tiennent pas compte de différences de ces temps de remplissage.

Les diagrammes de la vitesse mesurée en fonction du temps à partir de l'activation du serrage imposé présentent tous une ligne presque droite pendant le freinage. Une ligne <u>droite</u> reflète une décélération constante. Ce n'est qu'à la fin du freinage, à moins de 15 km/h environ, que les enregistrements sont plus abrupts. La décélération n'augmente que peu avant l'arrêt avec le coefficient de frottement du matériau des semelles de frein. La décélération à peu près constante mesurée et la méthode de calcul correspondent entre elles. L'applicabilité de la méthode de calcul est prouvée par la similitude des courbes obtenues par mesure et par calcul.

5.2 Essais de freinage avec trains complets

Les essais de freinage ont été exécutés avec des trains complets de différentes longueurs. Tous les freinages imposés ont été activés à l'approche du signal de sortie B12 à Schiers. La course en direction du signal indiquant l'arrêt s'est déroulée à vitesse constante et frein à air desserré, jusqu'à ce que le freinage imposé soit activé par le contrôle de la marche des trains. L'entier du tronçon entre le signal avancé de sortie B*12 et le signal de sortie B12 est rectiligne et accuse une pente descendante de 15 ‰. Par conséquent, la décélération du train par rapport à un tronçon plat est diminuée et la distance de freinage prolongée. Les essais de freins ont été exécutés avec différentes vitesses initiales. Les diagrammes indiquent la courbe des vitesses depuis l'activation du freinage imposé jusqu'à l'arrêt. Par souci de clarté, un seul freinage par vitesse initiale est représenté, alors que les essais ont été répétés plusieurs fois. Ils se sont avérés d'une reproductibilité optimale. La courbe des vitesses a été mesurée par radar. Le signal du freinage imposé a été saisi des circuits du véhicule moteur et a servi de déclencheur de la mesure de la vitesse.

Les diagrammes indiquent la courbe de vitesse du train obtenue par mesure et la courbe théorique de vitesse du modèle de freinage.

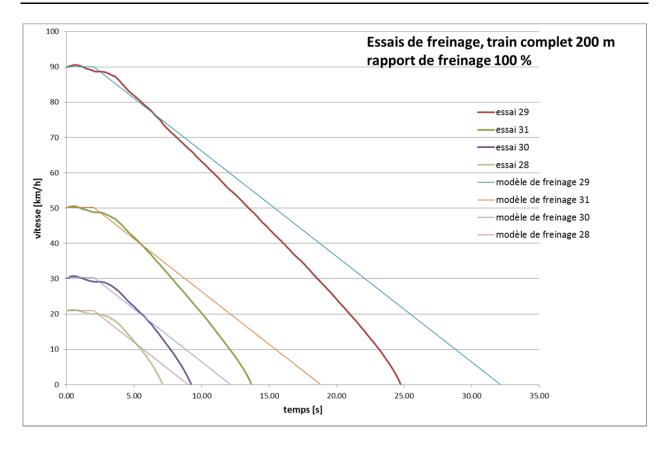
Le modèle de freinage correspondant au rapport de freinage de 100 % a été conçu pour une longueur du train maximale de 200 m. Les paramètres sont :

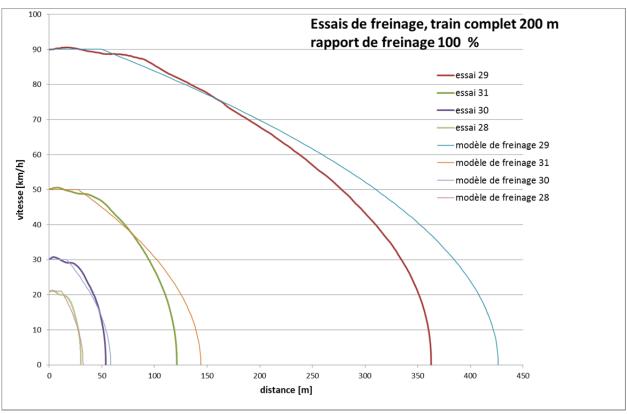
- temps de réaction 2,0 s
- décélération pendant le freinage : 0,98 m/s².

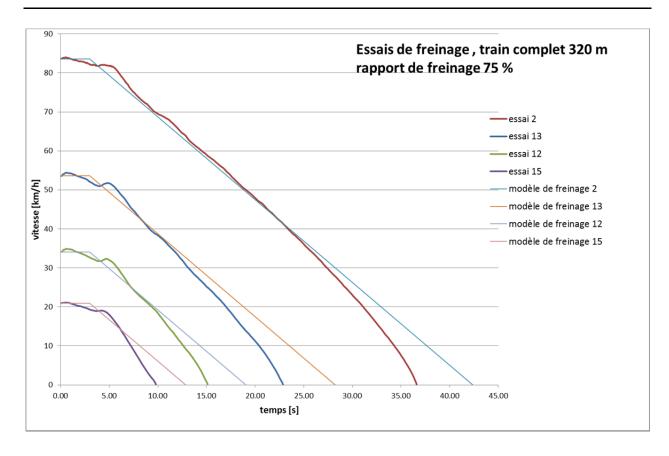
Le train d'essai servant à vérifier le modèle de freinage a été composé comme suit :

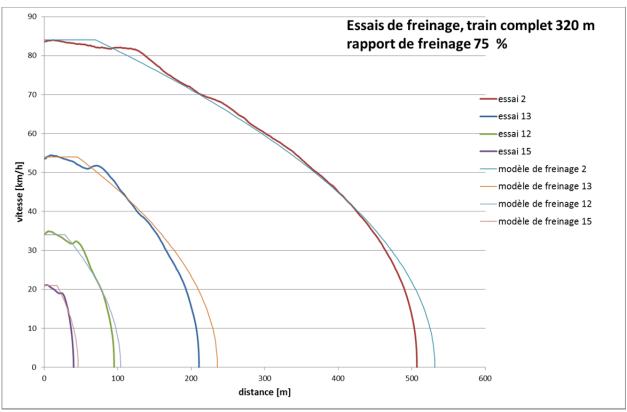
- locomotive Ge 4/4^{II}
- charge remorquée 40 essieux, voitures / 169 t.
- longueur du train 185 m
- rapport de freinage du train après calcul de freinage 100 %

Le modèle de freinage correspondant au rapport de freinage de 75 % a été conçu pour une longueur du train maximale de 350 m. Les paramètres sont :


- temps de réaction 3,0 s
- décélération pendant le freinage: 0,74 m/s².


Le train d'essai servant à vérifier le modèle de frein a été composé comme suit :

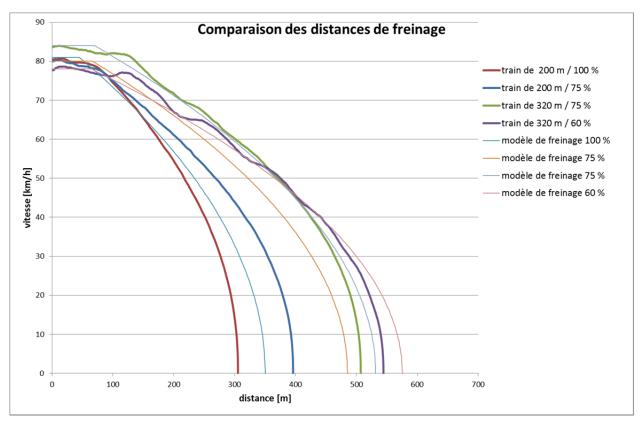

- locomotive Ge 4/4^{II}
- charge remorquée 76 essieux, voitures et wagons / 363 t.
- longueur du train 319 m
- rapport de freinage du train après calcul de freinage 73 %

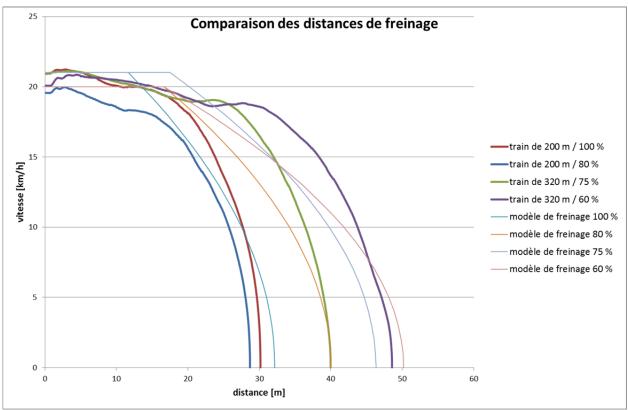

Les représentations graphiques indiquent l'allure des courbes de freinages représentatives en fonction du temps et de la distance parcourue à partir de l'activation du freinage imposé.

Page 20 07.07.2016

Page 22 07.07.2016

La force de freinage s'établit progressivement avec le remplissage du cylindre de frein. L'inflexion de la courbe des vitesses entre le temps de réaction et le freinage intégral est donc progressive.


Une légère augmentation de la vitesse est également visible pendant la première demiseconde qui suit l'activation du freinage imposé. Après 1,5 seconde au plus, la vitesse correspond à nouveau à la valeur initiale. Pendant le laps de temps entre la suppression du frein électrique et l'établissement de la pression dans le cylindre de frein du véhicule moteur, le train accélère à la descente.


Le temps de réaction du modèle de freinage a été diminué par rapport au temps de propagation effectif dans le train et au temps d'établissement dans les véhicules. Dans tous les essais à faible vitesse initiale (30 km/h et 20 km/h), les distances de freinage du modèle de frein ont été respectées ou elles ont été légèrement inférieures. Il est donc prouvé que le temps de réaction projeté est applicable aux formations de train déterminantes.

La courbe des vitesses d'un train long présente une bosse 5 secondes après l'activation du freinage imposé. Ce phénomène est dû aux réactions dynamiques dans le long train.

Les essais ont été exécutés avec des trains munis de freins à vide. Le temps de propagation jusqu'en queue du train en cas de freinage imposé est minimal avec le frein à vide, car tous les véhicules sont équipés de valves accélératrices. En revanche, les temps de remplissage du cylindre de frein sont proportionnellement longs.

Les graphiques ci-dessous représentent la courbe de la vitesse en fonction de la distance parcourue lors du freinage imposé avec différentes compositions de trains. Le rapport de freinage du train a été adapté par paralysage du frein sur certains véhicules sans modification de la composition du train. Lors de la comparaison, il faut garder à l'esprit que la vitesse initiale varie légèrement d'un essai à l'autre.

Page 24 07.07.2016

6 Conclusions

Les algorithmes employés dans l'analyse des risques se fondent sur les principes suivants :

- Après l'activation du freinage automatique, le train roule à vitesse constante pendant le délai d'établissement de l'effort de freinage
- Ensuite, il freine avec une décélération constante jusqu'à l'immobilisation.

Les algorithmes de calcul utilisés par les systèmes de contrôle de la marche des trains sont conçus à partir du même principe, tout en tenant compte plus exactement de facteurs d'influence supplémentaires tels que la déclivité locale. La vérification exacte de la procédure de calcul d'un système déterminé dépasse toutefois le cadre du présent rapport.

Il s'agit d'une méthode de calcul simplifiée en ce qui concerne le comportement effectif du véhicule :

- La force de freinage effective est établie progressivement avec la hausse de la pression dans le cylindre de frein.
- Après l'établissement de la pression dans le cylindre de frein, la force de freinage est constante. La décélération en revanche est variable, car le coefficient de frottement semelle de frein-roue ou garniture de frein-disque de freins varie avec la vitesse momentanée.
- L'allure de la courbe du coefficient de frottement par rapport à la vitesse momentanée varie en fonction du matériau employé.
- Dans les conditions régnant en Suisse, un éventuel déclenchement retardé de la traction constitue plutôt l'exception. Il n'en est donc pas tenu compte. Il faut examiner cette éventualité au cas par cas.

Cette méthode de calcul déroge aux diagrammes d'évaluation des freins des DE-OCF, DE 52.2, feuille 9, car :

- Les diagrammes d'évaluation des freins sont basés sur le comportement des sabots de frein en fonte grise, qui ne sont plus très répandus.
- Les diagrammes d'évaluation des freins ne prennent pas en compte des temps de remplissage du cylindre de frein différents.

Pour ces raisons également, les diagrammes d'évaluation des freins des DE-OCF, DE 52.2, feuille 9, s'écartent du comportement effectif des différents types de construction des véhicules.

Cette méthode de calcul permet de représenter le comportement de chaque type de construction de véhicules aussi bien que les bases des DE-OCF. Il est décisif de prendre en compte correctement les paramètres spécifiques des véhicules, afin que les variations dues à la simplification du modèle agissent dans le sens de la sécurité.

La méthode de calcul avec le principe « rouler pendant le temps d'établissement de la force de freinage – freinage avec décélération constante » est appropriée pour les systèmes de contrôle de la marche des trains et pour les analyses des risques.