

Dipartimento federale dell'ambiente, dei trasporti, dell'energia e delle comunicazioni DATEC

Ufficio federale dei trasporti UFT Divisioni Infrastruttura e Sicurezza

Data: 1° gennaio 2021 Versione: 1.3

N. di riferimento: / BAV-511.5-00027/00004/00003/00004

Direttiva

Attestato di sicurezza concernente il comportamento dinamico di ferrovie a scartamento metrico o speciale e a cremagliera

(D CD-MSC)

Nota editoriale

Editore	Ufficio federale dei trasporti, 3003 Berna		
Autore	Thomas Schlusemann		
Distribuzione	pubblicazione sul sito internet dell'UFT		
Lingue	italiano		
	francese		
	tedesco (originale)		

Gestione del documento all'interno dell'UFT

Livello piano Q	Dir., pubblico
Connessione QM-SI:	BAV-Ril_FV-MSZ_Nachweis-sicheres-Fahrverhalten_Meter-spur+Spezialspur+Zahnradbahnen_V1.3_2020-08
Campo d'applicazione processi UFT:	processo UFT 42

La presente direttiva entra in vigore il 1° gennaio 2021; sostituisce la direttiva omonima, versione 1.2, del 3 aprile 2018.

Ufficio federale dei trasporti	
Divisione Infrastruttura	

Divisione Sicurezza

Anna Barbara Remund, Vicedirettrice

Dott. Rudolf Sperlich, Vicedirettore

Edizioni / documentazione delle modifiche

Versione	Data	Autore	Modifiche	Stato ^x
1.1	21.02.2018	Th. Schlusemann	Rielaborazione generale,	In revisione
1.2	03.04.2018	Th. Schlusemann	semplificazioni	In vigore
1.3	01.01.2021	Th. Schlusemann	Rielaborazione capitolo 3.2 «Sicurezza contro il deragliamento – ferrovie a	In vigore
			cremagliera», integrazione della prova mediante simulazione numerica	

^x Stati previsti: in elaborazione / in revisione / in vigore (con visto) / sostituito.

Indice

1	Scopo de	lla direttiva	3
2		li marcia	
	2.1 S	volgimento	4
	2.2 O	bbligo della prova della stabilità di marcia	4
	2.2.1	Metodi di prova	4
	2.3 R	ollio	5
3		contro il deragliamento	
	3.1 F	errovie ad aderenza (ScD-A)	5
	3.1.1	Metodo 1 (procedura diretta)	6
	3.1.2	Metodo 2 (procedura indiretta)	6
	3.1.3	Metodo 3 (procedura indiretta semplificata)	6
	3.1.4	Metodo B (procedura diretta basata su simulazione)	7
	3.2 F	errovia a cremagliera (ScD-C)	7
	3.2.1	Metodo di Borgeaud (programma di calcolo quasi-statico, stato rigido)	7
	3.2.2	Metodo 2 (procedura quasi-statica, di simulazione)	8
	3.2.3	Riconoscimento di un metodo di calcolo	9
4	Stabilità i	n presenza di venti laterali	11
5	Bibliograf	ia	11
6			
	6.1 A	bbreviazioni e simboli	12
	6.2 N	lodello di riferimento e quattro scenari	15
	6.2.1	Set di parametri	15
	6.2.2	Risultati di riferimento	21

1 Scopo della direttiva

Scopo della presente direttiva è definire le basi per fornire l'attestato di sicurezza concernente il comportamento dinamico dei veicoli a scartamento metrico o speciale e a cremagliera.

Essa si prefigge di precisare le leggi, le ordinanze, le disposizioni d'esecuzione e le norme applicabili alla prova della sicurezza di marcia.

Le basi legali della presente direttiva sono costituite dalle prescrizioni della legge federale sulle ferrovie (Lferr), stato 1° luglio 2020, dall'ordinanza sulla costruzione e l'esercizio delle ferrovie (Oferr), stato 12 giugno 2020, dalle disposizioni d'esecuzione dell'Oferr (DE-Oferr), stato 1° novembre 2020, e dalla direttiva concernente l'omologazione di veicoli ferroviari nella sua versione del 1° dicembre 2019.

La presente direttiva non ha la stessa valenza di una legge o di un'ordinanza, ma è più vincolante di una semplice raccomandazione. Sono ammesse deroghe, purché l'obiettivo perseguito dalla legge, dall'ordinanza e dalla direttiva sia comunque raggiunto.

Il richiedente che si attiene alla direttiva ha la certezza che l'autorità accetti sul piano metodologico la documentazione fornita. Diversamente, corre il rischio che la sua domanda venga respinta.

2 Stabilità di marcia

Per le ferrovie ad aderenza naturale e per quelle ad aderenza mista (naturale e a cremagliera) occorre fornire la prova della stabilità di marcia d'intesa con l'UFT, in analogia con quanto previsto dalla norma SN EN 14363:2016.

Se la velocità massima ammessa del veicolo è inferiore a 100 km/h, di norma non occorre fornire alcuna prova concernente la stabilità di marcia.

Qualora sul veicolo siano installati sistemi che in caso di guasto o di malfunzionamento potrebbero pregiudicare la sicurezza di marcia o la sagoma limite, il loro stato deve essere verificato in modo completo durante i test di marcia.

2.1 Svolgimento

I test di marcia vanno svolti in condizione di tara con le rotaie asciutte e senza lubrificazione del bordino, arrivando fino al 110 per cento della velocità massima ammessa del veicolo.

Le misurazioni vanno effettuate seguendo la procedura semplificata descritta nella norma SN EN 14363:2016:

- è necessario effettuare la misurazione dei valori di accelerazione laterale ypp^+ sul telaio degli organi di rotolamento in corrispondenza delle sale montate;
- per la valutazione del rollio, è consigliabile effettuare la misurazione dei valori di accelerazione $ypp^*e\ zpp^*$ nella cassa del veicolo (cassa) in corrispondenza degli organi di rotolamento.

Per l'esame e la verifica del rispetto dei valori limite di $ypp^+_{rms,lim}$ occorre attenersi alla norma SN EN 14363:2016.

2.2 Obbligo della prova della stabilità di marcia

In base ai risultati di verifiche precedenti, la prova della stabilità di marcia risulta obbligatoria nei seguenti casi:

- per i carrelli motore (potenziali infossature causate dalla trazione) e gli organi di rotolamento non convenzionali (carrelli a scartamento variabile e carrelli intercarro), nel caso di una velocità massima ammessa del veicolo $v_{zul} \geq 100 \; \mathrm{km/h.}$
- per i carrelli portanti (basso momento d'inerzia), nel caso di una velocità massima ammessa del veicolo $v_{zul} \ge 120 \, \mathrm{km/h}$.

2.2.1 Metodi di prova

D'intesa con l'UFT può essere impiegato uno dei seguenti metodi.

Metodo 1: verifica della stabilità di marcia mediante test di marcia.

- Corse di prova su una tratta di riferimento con profili delle ruote nuovi (in assenza di un profilo di usura noto) (misurazione del profilo delle ruote + esame della conicità).
- Corse di prova su una tratta di riferimento con profili delle ruote usurati (dopo il primo anno di esercizio, ovvero precedentemente alla prima riprofilatura programmata) oppure profilo di usura noto (ad es. FR W03) (misurazione del profilo delle ruote + esame della conicità).

Metodo 2: monitoraggio permanente della stabilità di marcia.

- Registrazione quotidiana dei valori massimi di accelerazione laterale $ypp^+_{\rm rms}$ nonché della prestazione chilometrica effettiva di un veicolo di riferimento nell'esercizio normale.
- Monitoraggio mensile fino alla prima riprofilatura programmata (ca. 80 000–120 000 km).
- Soglia di allarme: valori limite ypp⁺_{rms.lim.red} ridotti del 20 per cento.

2.3 Rollio

Il valore limite per il coefficiente di inclinazione è definito nelle DE-Oferr 18.2 / 47.2. Se viene superato, occorre verificare il calcolo delle riduzioni.

Il coefficiente di inclinazione va ricavato conformemente alla norma SN EN 14363:2016 dalla:

- misurazione o simulazione di un test di stabilità statico (rollio verso il lato interno della curva);
 oppure
- misurazione o simulazione di una corsa quasi-statica in curva (rollio verso il lato esterno della curva).

3 Sicurezza contro il deragliamento

3.1 Ferrovie ad aderenza (ScD-A)

A prescindere dalla velocità di marcia prevista, occorre fornire la prova di calcolo (simulazione) della sicurezza contro il deragliamento su sghembi di binario, in analogia con quanto previsto dalla norma SN EN 14363:2016, ossia determinando il valore limite Y/Q ovvero il sormonto della ruota Δz_R e confrontandolo con i valori limite ammessi (adeguati rispetto alla norma).

Nel caso delle ferrovie ad aderenza, si considera una condizione sfavorevole l'uscita da una curva sopraelevata (sghembo di binario); ciò corrisponde a uno sgravio del carico sulla ruota di guida sul lato esterno della curva (per ogni organo di rotolamento).

Dei quattro metodi di seguito descritti, solo i due metodi diretti 1 e B¹ sono applicabili alle ferrovie a scartamento ridotto.

Per le ferrovie a scartamento ridotto (scartamento metrico M / scartamento speciale S) le procedure di verifica sono state adeguate alle condizioni specifiche della rete.

Gli esami vanno eseguiti con profili delle ruote rappresentativi e con i profili delle rotaie specifici della rete, nonché con le condizioni di posa nominali (scartamento, inclinazione della rotaia).

Inoltre, per ottenere un ulteriore margine di sicurezza i calcoli vanno eseguiti con **sghembi di prova maggiorati del 10 per cento**. In questo caso è sufficiente che il veicolo percorra l'intera sezione di prova senza un effettivo deragliamento (sormonto sopra l'altezza del bordino), anche superando i valori limite.

¹ Abbreviazione di «metodo secondo la norma SN EN 14363:2016, allegato B».

3.1.1 Metodo 1 (procedura diretta)

Prova diretta sulla base degli sforzi (Y, Q) su curva di binario sghembo (CBS).

3.1.1.1 Condizioni di verifica e valori limite adeguati per il metodo 1

Paran	netro	Definizione	Valori usuali (M+S)	Valori scart. normale (N)	Condizione	Nota
	Raggio del binario di veri- fica	$R = 100 \text{ m}$ $R = R_{min}$		150 m		
	Sopraelevazione	$u = \pm 45 \text{ mm}$				Scarsa influenza del rollio
38	Sghembo di prova prima- rio	g+: specifico alla rete	6,0 ‰	7,0 ‰	FR 20879D	
ifica Cl	Sghembo di prova secon- dario	g*: specifico alla rete	3,0 ‰	3,0 ‰ (4,0 ‰)	R RTE 22546	
Condizioni di verifica CBS	Differenza di carico su ruota	$\Delta q_0 = 5 \%$			DE-Oferr DE 47.1	Valore massimo ammesso
izior	Velocità di marcia	v = 1 m/s				A passo d'uomo
Cond	Coefficiente di attrito del fianco del bordino	$\mu_F=0,\!40$				
	Coefficiente di attrito della superficie di rotolamento	$\tau_{max} = \mu_T(\bar{Q}_0, \alpha)$	0,42 0,52		$2\bar{Q}_0 = 20 \text{ t } \dots 5 \text{ t},$ SN EN 14363:2016	α angolo di attacco
		$\tau = \frac{\gamma}{Q}\Big _{i} - \gamma_{t}$				γ _t angolo di contatto
	Valore limite diretto 1	$\left \frac{\mathbf{Y}}{\mathbf{Q}} < \frac{\mathbf{Y}}{\mathbf{Q}} \right _{lim} = \frac{\tan \beta_F - \mu_F}{1 + \mu_F \cdot \tan \beta_F}$	0,85 <u>1,44</u>	1.2 ($\beta_F = 70^\circ$)	$\mu_F = 0.36$ $\beta_F = 60^{\circ} 70^{\circ} 75^{\circ}$	Coefficiente di deraglia- mento ²
<u>=</u>	Valore limite indiretto 2	$\Delta \mathbf{z}_R < \Delta \mathbf{z}_{R,lim} = 5 \ \mathbf{mm}$			In caso di supera- mento del valore li- mite 1	Sormonto della ruota ³
	Altro valore limite 3	$\Delta Q/ar{Q}_0$		-	Solo osservazione	Sgravio relativo del carico su ruota ⁴

Le due condizioni influenza del rollio e coefficiente di attrito sono evidenziate in blu perché sostanzialmente differenti rispetto al metodo B.

3.1.2 Metodo 2 (procedura indiretta)

Derivazione dall'andamento della curva (Y) e dallo sgravio del carico su ruota (Q).

Il metodo 2 consente di ottenere indicazioni fondate, ma richiede oneri di verifica e di valutazione sproporzionati. È quindi **da escludere**.

3.1.3 Metodo 3 (procedura indiretta semplificata)

Derivazione dalla rigidezza alla rotazione misurata sugli organi di rotolamento e dallo sgravio del carico rilevato sulle ruote del veicolo.

Dato che la maggior parte dei veicoli a scartamento ridotto è dotata di organi di rotolamento a corona girevole, l'applicazione di questo metodo **non è ragionevole**.

Il metodo 3 consente di ottenere indicazioni fondate, ma richiede oneri di verifica e di valutazione sproporzionati. È quindi **da escludere**.

 $^{^2}$ Formula secondo NADAL, con angolo dei fianchi del bordino β_F e coefficiente di attrito del bordino μ_F

 $^{^3}$ In caso di situazioni sfavorevoli caratterizzate da altezza del bordino importanti raggi di curvatura della sella del bordino e del fungo della rotaia, sarà probabilmente necessario ridurre il valore limite $\Delta z_{R,lim}$, in modo che l'effettivo punto di contatto del bordino non rientri nel raggio di curvatura del fungo della rotaia.

 $^{^4}$ \bar{Q}_0 : forza media di contatto della ruota di una sala montata su binario orizzontale (nella SN EN 14363:2016, allegato V: Q_{F0})

3.1.4 Metodo B (procedura diretta basata su simulazione)

Prova diretta sulla base degli sforzi (Y, Q) su una curva di uscita tracciata in modo analogo al servizio effettivo con depressione locale (CUD).

3.1.4.1 Condizioni di verifica e valori limite adeguati per il metodo B

Parar	netro	Definizione	Valori usuali (M+S)	Valori scart. normale (N)	Condizione	Nota
	Raggio del binario di veri- fica	$R = 100 \text{ m}$ $R = R_{min}$		200 m 100 m		
	Sopraelevazione	$u = 105 \text{ mm}$ $u = u_{max}(R_{min})$		150 mm 50 mm	R RTE 22546	Piena influenza del rollio
CUD	Depressione	$l_{Senke} = 2a^+$		6 m		Depressione di forma triangolare con larghezza del sostegno dimezzata l_{Senke}
Condizioni di verifica	Sghembo di prova prima- rio	g+: specifico alla rete	6,0 ‰	6,7 ‰	FR 20879D	
ioni di	Sghembo di prova secon- dario	g*: specifico alla rete	3,0 ‰	3,3 ‰	R RTE 22546	
Condiz	Differenza di carico su ruota	$\Delta q_0 = 5 \%$			DE-Oferr DE 47.1	Valore massimo ammesso
	Velocità di marcia	1 m/s				A passo d'uomo
	Coefficiente di attrito del fianco del bordino	$\mu_F = 0.32$		μF=0,32	SN EN 14363:2016	Valore ridotto secondo la norma
	Coefficiente di attrito della superficie di rotolamento	$\mu_T = 0.32$		0,32	SN EN 14363:2016	Valore ridotto secondo la norma
	Valore limite diretto 1	$\left \frac{\mathbf{Y}}{\mathbf{Q}} < \frac{\mathbf{Y}}{\mathbf{Q}} \right _{lim} = \frac{\tan \beta_F - \mu_F}{1 + \mu_F \cdot \tan \beta_F}$	0,91 <u>1,55</u>	1,2 (β _F > 68°)	$μ_F = 0.32$ $β_F = 60^\circ 70^\circ 75^\circ$	Coefficiente di deraglia- mento ²
<u><u>=</u></u>	Valore limite indiretto 2	$\Delta \mathbf{z}_R < \Delta \mathbf{z}_{R,lim} = 5 \text{ mm}$		-	In caso di supera- mento del valore li- mite 1	Sormonto della ruota ³
	Altro valore limite 3	$\Delta Q/ar{Q}_0$		-	Solo osservazione	Sgravio relativo del carico su ruota

A differenza del metodo 1, in questo caso si specificano la piena influenza del rollio e un coefficiente di attrito ridotto.

3.2 Ferrovia a cremagliera (ScD-C)

Occorre fornire la prova di calcolo (simulazione) della sicurezza contro il deragliamento (finora «stabilità longitudinale» e «sicurezza contro il deragliamento») in analogia con le disposizioni delle DE-Oferr, DE 54.1.

Nel caso delle ferrovie a cremagliera, si considera una condizione sfavorevole una **doppia frenatura** in **curva** durante la **discesa** e **venti laterali**; ciò corrisponde a uno **sgravio del carico sulla ruota a monte sul lato esterno della curva** (per ogni organo di rotolamento) determinato da forze di frenatura, inerziali, di accoppiamento, dei venti laterali e di spinta delle ruote nonché dallo sghembo di binario (variazione della sopraelevazione + torsione elicoidale⁵).

La prova va fornita applicando il metodo 2 (cfr. 3.2.2). Questo metodo si basa su quello quasi-statico secondo Borgeaud, ma è stato adeguato allo stato della tecnica.

Se risulta efficace una lubrificazione del bordino, si può partire dal presupposto che le condizioni di attrito definite secondo DE-Oferr, DE 54.1, numero 3.4 saranno favorevoli.

3.2.1 Metodo di Borgeaud (programma di calcolo quasi-statico, stato rigido⁶)

La procedura secondo Borgeaud applicata finora non corrisponde più allo stato della tecnica. I valori limite concepiti per questa procedura, S_0 (fattore di sicurezza della stabilità longitudinale) e

 $^{^5}$ Torsione elicoidale: sghembo dovuto alla pendenza del binario N, al raggio di curvatura R e alla larghezza del sostegno s_w

⁶ Stato considerato senza spostamenti e deformazioni

 S_R (fattore di sicurezza della sicurezza contro il deragliamento), vengono sostituiti da criteri di limitazione attuali.

Di conseguenza, il commento 8 alle DE-Oferr diviene superfluo.

In caso di modifiche a veicoli storici che durante l'esercizio non abbiano presentato anomalie in quanto a stabilità e sicurezza contro il deragliamento, si continua ad ammettere in via eccezionale il metodo di Borgeaud, poiché consente di confrontare come le modifiche di utilizzo o di componenti agiscano sulla stabilità e sulla sicurezza contro il deragliamento.

Va tuttavia evitato che i valori di sicurezza scendano al di sotto di quelli della versione originale del veicolo non considerando l'effetto della torsione elicoidale.

3.2.2 Metodo 2 (procedura quasi-statica, di simulazione)

La prova viene eseguita direttamente sulla base degli sforzi (Y, Q) su una curva di uscita tracciata in modo analogo al servizio.

Il processo di frenatura è considerato quasi-statico, ma devono essere osservati e valutati gli effetti non quasi-statici durante la corsa sulla curva di raccordo deformata.

Gli esami vanno eseguiti con profili delle ruote seriali e con i profili delle rotaie specifici della rete (tutti allo stato nominale), nonché con le condizioni di posa nominali (scartamento, inclinazione della rotaia).

Ulteriori tolleranze di costruzione e produzione, usura e condizioni meteorologiche non vengono considerate.

Il veicolo è ritenuto sicuro quando è rispettato il valore limite diretto per lo sgravio relativo del carico su ruota $\Delta Q/\bar{Q}_0$.

Se questo viene superato, è obbligatorio osservare tutti i valori limite indiretti (sgravio relativo del carico su ruota $\Delta Q/\bar{Q}_0|_{red}$, coefficienti di deragliamento Y/Q e sormonto della ruota ΔZ_R).

3.2.2.1 Condizioni di verifica e valori limite adequati

Paran	netro	Definizione	Valori usuali	Condizione	Nota
	Raggio di curvatura	R: specifico alla tratta	≥ 60 m	DE-Oferr, DE 17, 5.2 R RTE 22546, 7.2	Condizione più sfavorevole della tratta d'esercizio
	Sopraelevazione	u: specifico alla tratta	≤ 35 mm (M) ≤ 50 mm (N)	DE-Oferr, DE 17, 3.4 R RTE 22546, 5.5	(combinazione $R \mid u \mid N$)
	Pendenza del binario	N: specifico alla tratta	≤ 250 ‰	DE-Oferr, DE 17, 7.2 R RTE 22546, 9.2	
	Sghembo di sopraelevazione	g_U : specifico alla tratta	≤ 2,5 (3,0) ‰	DE-Oferr, DE 17, 4.2 R RTE 22546, 6.2	
<u> </u>	Difetto di geometria del bina- rio	$\Delta g^+ = 0 \%_0$			Nessun errore doppio: posizione del binario + doppia fre- natura
a Sc	Differenza di carico su ruota	$\Delta q_0 \approx 0 \%$	≤ 5 %	DE-Oferr, DE 47.1, 2.2	Valore massimo ammesso ⁷
rifica	Velocità di marcia	v = 1 m/s			A passo d'uomo
di ve		$v = v_{max} + 10 \%$	≤ 40 km/h	DE-Oferr, DE 76.1.a, 9f	Secondo la categoria di velocità
Condizioni di verifica ScD-C	Velocità del vento	$v_w = 50 \text{ km/h}$ o specifico alla tratta		DE-Oferr, DE 54.1, 5.3 DB Ril 807.0439	Secondo le condizioni locali Vento laterale 90°
Conc	Coefficiente di attrito del fianco del bordino	$\mu_F = 0.15$ (non lubrificato: 0,30)		DE-Oferr, DE 54.1, 3.4	Documentazione lubrificazione del bordino
	Coefficiente di attrito della superficie di rotolamento	$\mu_T = 0.30$		DE-Oferr, DE 54.1, 3.4	
	Coefficiente di attrito della cremagliera	$\mu_Z = 0.15$		DE-Oferr, DE 54.1, 3.4	(ripartizione secondo Borgeaud)
	Forza di frenatura	In base al calcolo di frena- tura		DE-Oferr, DE 54.2, 2.2	Supplemento 15 % (margine di si- curezza)
	Stato del veicolo	Tara (event. lorda) Sospensione nom. Sospensione pneumatica		Secondo l'esercizio	Nessun errore doppio: sospensione di emergenza + dop- pia frenatura
	Fattore di sicurezza della stabilità longitudinale	S_Q	(1,3 1,4)		Soppresso secondo 3.2.1
Ë	Fattore di sicurezza della sicurezza contro il deraglia-mento	S_R	(1,2 1,25)		Soppresso secondo 3.2.1

 $^{^7}$ Veicoli modellati simmetricamente con differenze reali di carico su ruota $\Delta q_0 \leq 5~\%$

Paran	netro	Definizione	Valori usuali	Condizione	Nota
	Valore limite diretto 1	$\left \frac{\Delta Q}{\overline{Q}_0}\right < \left \frac{\Delta Q}{\overline{Q}_0}\right _{lim} = 80 \%$			Sgravio relativo del carico su ruota (stabilità)
	Valore limite indiretto 1	$\left \frac{\Delta Q}{\overline{Q}_0}\right < \left \frac{\Delta Q}{\overline{Q}_0}\right _{lim,red} = 95 \%^{-7}$		In caso di superamento del valore limite diretto	
	Valore limite indiretto 2	$\left \frac{\mathbf{Y}}{\mathbf{Q}} < \frac{\mathbf{Y}}{\mathbf{Q}} \right _{lim} = \frac{2}{3} \cdot \frac{\tan \beta_F - \mu_F}{1 + \mu_F \cdot \tan \beta_F}$	0,84 <u>1,53</u>	1 $\mu_F = 0.15$ $\beta_F = 60^{\circ} 70^{\circ} 75^{\circ}$	Coefficiente di deragliamento ⁸ (sicurezza contro il deraglia- mento)
	Valore limite indiretto 3	$\Delta z_R < \Delta z_{R,lim} = 5 \text{ mm}$			Sormonto della ruota ³ (sicurezza contro il deraglia- mento)

Per ottenere un ulteriore margine di sicurezza⁹ i calcoli vanno eseguiti con **coefficienti di attrito delle cremagliere maggiorati del 20 .. 25** %. In questo caso il veicolo deve percorrere la sezione di prova, integrata con un ingresso in curva, senza un effettivo deragliamento (sormonto sopra l'altezza del bordino), anche superando i valori limite.

- $\mu_Z = 0.15 \cdot 120 \% = 0.18$ Categoria di velocità 2^{10} (~ locomotive, treni trainati da locomotive)
- $\mu_z = 0.15 \cdot 125 \% = 0.1875$ Categoria di velocità 3^{10} (~ elettrotreni, automotrici)

3.2.2.2 Processo di simulazione

Lo scenario parte da uno

• stato iniziale statico ($R = u = N = v = a = v_w = F_{T|B} = 0$).

Questo sarà quindi gradualmente integrato con le seguenti modifiche:

- impostazione dello stato di frenatura quasi-statico (a da $m_{trans|rot}$, w, $F_{T|B}$ e N)
- corsa a valle con pendenza del binario N
- ullet ingresso in curva con sghembo di sopraelevazione $g_{\it U}$
- piena curva con raggio R (torsione elicoidale $g_H \approx \frac{-N}{1+N^2} \frac{s_W}{R}$) e sopraelevazione u
- applicazione del vento laterale con velocità v_w

3.2.3 Riconoscimento di un metodo di calcolo

Per far riconoscere un metodo di calcolo dall'UFT, è necessario produrre un modello di riferimento, nel quale si mostra che i risultati di riferimento possono essere raggiunti mediante parametri predefiniti.

3.2.3.1 Topologia ed effetti da rappresentare

Il modello di simulazione e la simulazione della corsa devono rappresentare la topologia e gli effetti indicati di seguito.

- Rigidezze ed elasticità dell'organo di rotolamento e della cassa
- Dispositivo di guida (contatto ruota-rotaia secondo lo stato della tecnica)
- Ingranamento (contatto ruota dentata-cremagliera)
- Ripartizione dei coefficienti di attrito della cremagliera orizzontali / verticali (quasi-statici secondo Borgeaud)
- Reazioni di trazione (geometria di sospensione, masse rotanti, condizioni di frenatura quasistatiche)
- Forze di accoppiamento nel convoglio

⁸ Formula secondo NADAL, ridotta di un terzo in piena curva rispetto alla curva di raccordo, in analogia alla SN EN 14363

⁹ Per analogia con il supplemento di sicurezza finora applicato del 5–25 % (DE-Oferr, DE 54.1)

¹⁰ Definizione secondo DE-Oferr, DE 76.1.a, numeri 9 e segg.

- Forze dei venti laterali (stabilità)
- Torsione elicoidale

3.2.3.2 Modello di riferimento e quattro scenari

Come modello di riferimento si considera una locomotiva a cremagliera a quattro assi He 4/4, con le seguenti caratteristiche: diversi aggetti della cassa, carrelli asimmetrici (passo, massa, rigidezza della sospensione primaria), ruote folli, puri motori sospesi a naso e ripartizione di frenata asimmetrica.

Si calcolano quindi i seguenti quattro scenari:

Solo solamente locomotiva, senza vento laterale

Solo (+vento)
 più vento laterale

composizione (+TB non frenata)
 locomotiva + locomotiva lato monte

• composizione (+TB frenata, +vento) più locomotiva lato monte frenata e vento laterale

I rispettivi gruppi di parametri sono riportati all'allegato 6.2.1.

Modello di base geometria principale, livelli primario e secondario,

massa e contatto ruota-rotaia

Motore dati del motore e contatto ruota dentata-crema-

gliera

Scenari geometria e massa del treno, trazione/frenatura,

corsa + tratta e vento laterale

All'allegato 6.2.2 sono invece rappresentati i risultati di riferimento:

• forza statica di contatto della ruota Q_0

• coefficiente di attrito trasversale quasi-stat. del dente $\bar{\mu}_{Z,y,qst}$

• coefficiente di attrito verticale quasi-stat. del dente $\bar{\mu}_{Z,z,ast}$

• forza longitudinale quasi-stat. del dente $Z_{x,qst}$

• forza trasversale quasi-stat. del dente $Z_{v,ast}$

• forza verticale quasi-stat. del dente $Z_{z,qst}$

• forza longitudinale quasi-stat. della ruota $T_{x,ast}$

forza di guida quasi-stat. della ruota Y_{qst}

• forza di contatto quasi-stat. della ruota Q_{qst}

• quoziente di deragliamento quasi-stat. $Y/Q|_{ast}$

• sgravio relativo quasi-stat. del carico su ruota $\Delta Q/\bar{Q}_0|_{ast}$

• sormonto quasi-stat. della ruota $\Delta z_{R,ast}$

I risultati di riferimento devono essere ottenuti con una tolleranza del \pm 2 % per i valori Q_0 , $\bar{\mu}_{Z,y,qst}$ e $\bar{\mu}_{Z,z,ast}$ e del \pm 5 % per tutti gli altri valori quasi-statici (stato finale dello scenario).

4 Stabilità in presenza di venti laterali

Per le ferrovie ad aderenza, se si prevede la presenza di condizioni di vento laterali rilevanti per la sicurezza durante l'esercizio occorre fornire la prova di calcolo (simulazione) della stabilità in presenza di venti laterali per il veicolo da omologare (ad es. secondo le prescrizioni DB Ril 807.04). Dalla prova si ricaverà un valore limite di velocità del vento fino al quale il gestore della ferrovia può garantire un esercizio sicuro.

Per le ferrovie a cremagliera l'esame dell'influsso del vento laterale è una componente sostanziale della prova della sicurezza contro il deragliamento (ScD-C) secondo il capitolo 3.2.

5 Bibliografia

Autore o abbreviazione	Titolo
Borgeaud, Dr. Gaston	«Stand- und Entgleisungssicherheit bei Bergbahnen»,
(SLM Winterthur)	«Schweizer Bauzeitung» anno 1996, numeri 27/28, 30/31, 32, 35
	e 37, 1978
	Integrazioni e correzioni in «Schweizer Ingenieur und Architekt»,
	numero 29, 1980
Pribnow, Hans-Hermann	«Zur Entgleisungssicherheit von Zahnradbahn-Fahrzeugen»,
(Schindler Waggon Schlieren)	«Eisenbahntechnische Rundschau», numero 1/2, 1983
Tillmetz, Karl (Stadler Bussnang),	«Die Helixverwindung – ein kritischer Einflussfaktor bei der Tras-
Braess, Patrick (Braess Consult)	sierung und Auslegung von Bergbahnen»
	«Schweizer Eisenbahn-Revue», 12/2020
D RTE 29700	«Ingénierie de système Chemins de fer à crémaillère»
	Unione dei trasporti pubblici (UTP), stato 31 marzo 2010
R RTE 22546	«Conception géométrique de la voie ferrée, Voie métrique»
	Unione dei trasporti pubblici (UTP), 15 gennaio 2012
SN EN 14363:2016	«Applicazioni ferroviarie - Prove e simulazioni per l'accettazione
	delle caratteristiche di marcia dei veicoli ferroviari - Prove di com-
	portamento dinamico e statico» (solo in ingl.)
	Comitato europeo di normazione (CEN), ottobre 2016
DB Ril 807.04,	«Richtlinie Aerodynamik / Seitenwind»
Moduli 0439, ovvero 0433	Deutsche Bahn AG, aprile 2006

6 Allegato

6.1 Abbreviazioni e simboli

Componenti, nomi propri

Abbrevia-	Descrizione
zione	
AL	Boccola di sala (boccola)
DB	Deutsche Bahn AG
DE-Oferr	Disposizioni d'esecuzione dell'ordinanza sulle ferrovie (UFT)
DG	Carrello
EN	Norma europea
FW	Organo di rotolamento
MKS	Sistema multicorpo
PF	Sospensione primaria
RS	Sala montata
RTE	Regelwerk Technik Eisenbahn – normativa di tecnica ferroviaria (UTP)
ScD-A	Sicurezza contro il deragliamento di ferrovie ad aderenza
ScD-C	Sicurezza contro il deragliamento di ferrovie a cremagliera
SF	Sospensione secondaria
SLM	Schweizerische Lokomotiv- und Maschinenfabrik, Winterthur
SN	Norma svizzera
SOK	Piano del ferro
ТВ	Sezione di treno, lato monte
TT	Sezione di treno, lato valle
UFT	Ufficio federale dei trasporti
UTP	Unione dei trasporti pubblici
WK	Cassa del veicolo (cassa)
ZOK	Bordo superiore della cremagliera

Indici, geometrie, rigidezza/rigidità, forze, momenti, fattori e altri valori

Simbolo	Unità	Descrizione
0		Non sospeso a livello del binario
<u></u> +		Sospensione primaria a livello dell'organo di rotolamento
::: *		Sospensione secondaria a livello della cassa
₀		Stato iniziale, a riposo
$2a^+$	[m]	Passo, primario
2a*	[m]	Distanza dei perni distanza totale organo di rotolamento, secondaria/fino all'articolazione
2 <i>b</i> ⁺	[m]	Base orizzontale della sospensione, primaria
2 <i>b</i> *	[m]	Base orizzontale della sospensione, secondaria
а	[m/s ²]	Accelerazione
a_1^+, a_2^+	[m]	Passo (asimmetria), per sala montata, primario
a_{K1}, a_{K2}	[m]	Lunghezza dell'accoppiamento, dall'articolazione fino al respingente / all'aggancio
a_{L1}, a_{L2}	[m]	Apertura della cassa (asimmetria), respingente / intercomunicante anteriore posteriore
a_q	[m/s ²]	Accelerazione trasversale
b_w	[m]	Scartamento
c_t	[Nm/rad]	Rigidità di torsione
c_{tS}^+	[Nm/rad]	Rigidità di torsione, struttura del telaio dell'organo di rotolamento, attorno a y
c_{tS}^*	[Nm/rad]	Rigidità di torsione, struttura della cassa, attorno a x
$c_{x,AL}^+$	[N/m]	Rigidità di sospensione, per boccola, primaria longitudinale
$c_{x,SF}^*$	[N/m]	Rigidità di sospensione, per ogni lato dell'organo di rotolamento, secondaria longitudinale
$c_{y,AL}^+$	[N/m]	Rigidità di sospensione, per boccola, primaria trasversale
$c_{y,SF}^*$	[N/m]	Rigidità di sospensione, per ogni lato dell'organo di rotolamento, secondaria trasversale
$c_{z,AL}^+$	[N/m]	Rigidità di sospensione, per boccola, primaria verticale

Simbolo	Unità	Descrizione
$C_{Z,SF}^*$	[N/m]	Rigidità di sospensione, per ogni lato dell'organo di rotolamento, secondaria verticale
$\overline{D_n}$	[m]	Diametro della ruota, nominale
$\overline{D_n}$	[m]	Diametro (normale) primitivo
$d_{f,e}^{n}$	[m]	Diametro di piede, effettivo
$d_{k,e}$	[m]	Diametro di testa, effettivo
$F_{T B}$	[N]	Forza di trazione frenatura
g	[-] [%]	Tracciato: torsione
<u>я </u>	[-] [‰]	Torsione elicoidale
<u>9н </u>	[-] [%]	Sghembo di sopraelevazione (dovuta al cambio di sopraelevazione)
<i>gu</i> <i>g</i> 0	[-] [%]	Sghembo di sopracievazione (dovata di cambio di sopracievazione) Sghembo di binario (completo)
g^+	[-] [%]	Sghembo (di prova), primario (carrello)
<u>y</u> Λα ⁺	[-] [‰]	Sghembo (di prova), primario (carreno) Sghembo (di prova), primario (depressione)
$\frac{\Delta g^+}{\sigma^*}$		
g* h	[-] [‰]	Sghembo (di prova), secondario (cassa) Altezza della cassa, da SOK alla sommità del tetto
	[m]	
$h_{f,e}$	[m]	Altezza effettiva della linea di piede al di sopra del SOK
$h_{k,e}$	[m]	Altezza effettiva della linea di testa <u>al di sopra del SOK</u>
h_n	[m]	Altezza normale della linea primitiva <u>al di sopra del SOK</u>
J_{xx}, J_{yy}, J_{zz}	[kgm ²]	Inerzia di massa attorno a x, y, z
k_{R1}, k_{R2}	[-]	Tipo di sala montata (asimmetria), ruote folli (0; 1)
l	[m]	Lunghezza della cassa, senza respingente / intercomunicanti
l_U	[m]	Tracciato: lunghezza della rampa di sopraelevazione
m	[kg]	Massa
m_1^0, m_2^0	[kg]	Massa, non sospesa (asimmetria), per sala montata
m ⁺	[kg]	Massa totale, sospensione primaria, per organo di rotolamento
m^*	[kg]	Massa totale, sospensione secondaria, per organo di rotolamento
m_{rot}	[kg]	Massa rotante, ridotta a d_n o D_n
m_{trans}	[kg]	Massa di traslazione, peso
N	[-] [‰]	Tracciato: pendenza del binario
n_{FW}	[-]	Numero di organi di rotolamento, per cassa
n_L	[-]	Numero di lamelle della cremagliera
n_{RS}	[-]	Numero di sale montate, per organo di rotolamento
n_Z	[-]	Numero di denti, per ruota dentata
p	[m]	Passo del dente
\overline{Q}	[N]	Forza di contatto delle ruote
$\frac{Q}{Q_0}$	[N]	Forza statica di contatto delle ruote
$\overline{ar{Q}}_0$	[N]	Forza statica media di contatto delle ruote della sala montata
$\Delta Q/ar{Q}_0$	[-] [%]	Sgravio relativo del carico su ruota
		Carico su ruota statico relativo (squilibrio di carico)
$rac{\Delta q_0}{R}$	[-] [%] [m]	Tracciato: raggio di curvatura, proiettato al suolo
r PD		Profilo di rotaia
	[-]	
<u>S</u>	[m]	Distanza circonferenza di misurazione, sala montata
$\frac{S_m}{S}$	[m]	Scartamento
$\frac{S_Q}{S}$	[-]	Fattore di sicurezza della stabilità longitudinale
S_R	[-]	Fattore di sicurezza della sicurezza contro il deragliamento
S_W	[m]	Larghezza del sostegno (ruota-rotaia)
T_x	[N]	Forza longitudinale della ruota
<u>u</u>	[m]	Tracciato: sopraelevazione
\ddot{u}_1 , \ddot{u}_2	[m]	Aggetto del veicolo, centro dell'organo di rotolamento fino al respingente / all'aggancio /
		all'articolazione
v	[m/s] [km/h]	Velocità
v_w	[m/s] [km/h]	Velocità del vento
W	[-] [%]	Resistenza al moto
WP	[-]	Profilo di ruota
x	[m]	Posizione su x (longit.)

Simbolo	Unità	Descrizione
x ⁺	[m]	Posizione su x (longit.), sospensione primaria
x^*	[m]	Posizione su x (longit.), sospensione secondaria
y	[m]	Posizione su y (trasv.)
<i>y</i> ⁺	[m]	Posizione su y (trasv.), sospensione primaria
y^*	[m]	Posizione su y (trasv.), sospensione secondaria
Y	[N]	Forza di guida della ruota
Y/Q	[-]	Quoziente di deragliamento
Z	[m]	Posizione su z (verticale)
Z^+	[m]	Posizione su z (verticale), sospensione primaria
z^*	[m]	Posizione su z (verticale), sospensione secondaria
Z_{K1}, Z_{K2}	[m]	Altezza di accoppiamento
Δz_R	[m]	Sormonto della ruota
Z_S	[m], [m s.l.m.]	Tracciato: altitudine del punto della tratta
Z_{x}	[N]	Forza longitudinale del dente (trazione/frenatura)
Z_y	[N]	Forza trasversale del dente (guida mediante attrito)
Z_z	[N]	Forza verticale del dente (portanza mediante ingranamento e attrito)
α	[rad]	Angolo di attacco della ruota
α_n	[rad]	Angolo normale di ingranamento (pendenza dei fianchi dei denti)
eta_F	[rad]	Angolo dei fianchi del bordino
μ_F	[-]	Coefficiente di attrito del fianco del bordino
μ_T	[-]	Coefficiente di attrito della superficie di rotolamento
μ_Z	[-]	Coefficiente di attrito del contatto del dente
$ar{\mu}_{Z,y}$	[-]	Coefficiente di attrito trasversale del dente, mediato attraverso un passo del dente p (con
		indicazione della direzione)
$\bar{\mu}_{Z,z}$	[-]	Coefficiente di attrito verticale del dente, mediato attraverso un passo del dente p
$ ho_L$	[kg/m ³]	Densità dell'aria (da z_S)

6.2 Modello di riferimento e quattro scenari

6.2.1 Set di parametri

Modello di base

		•			A valle	A monte
Descrizione	Nota		Simbolo	Unità	He	4/4
						1
					DG	DG
					2	1

Geometria principale

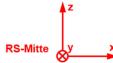
Geometria principale				,	,
Diametro della ruota	nominale	D_n	[m]	0,790	0,790
Passo	per sala montata, primario	a_1^+	[m]	1,120	1,120
		a_2^+	[m]	1,520	1,520
Distanza dei perni	secondaria/fino all'articolazione	2a*	[m]	5,4	130
Cassa	lunghezza, senza respingente / raccordi carrozze	ı	[m]	11,	000
	apertura, respingente / raccordo carrozze	a_{L1}	[m]	0,7	' 65
		a_{L2}	[m]	0,7	' 65
	altezza, da SOK alla sommità del tetto	h	[m]	3,4	50
Tipo di sala montata	ruote folli (0,1)	k_{R1}	[-]	1	1
		k_{R2}	[-]	1	1

Livello primario

Livello primario					
Numero di sale montate	per organo di rotolamento	n_{RS}	[-]	2	2
Sospensione	posizione longitudinale (rif. RS)	<i>x</i> ⁺	[m]	0,000	0,000
	base trasversale	2 <i>b</i> ⁺	[m]	1,500	1,500
	altezza	z^+	[m]	0,632	0,632
Rigidità di sospensione	per boccola, primaria, longitudinale	$c_{x,AL}^+$	[N/mm]	7000	7000
	per boccola, primaria, trasversale	$c_{y,AL}^+$	[N/mm]	3500	3500
	per boccola, primaria, verticale	$c_{z,AL1}^+$	[N/mm]	1382	1382
		$c_{z,AL2}^+$	[N/mm]	1018	1018
Telaio dell'organo di ro-	rigidità di torsione	c_{tS}^+	[N/mm]	2000	2000
tolamento					

Livello	secondario
---------	------------

Numero di organi di roto- lamento	per cassa	n_{FW}	[-]	2	2
Trascinamento longitudi-	posizione longitudinale, organo di rotolamento	$x_{LM,FW}^*$	[m]	-0,400	-0,400
nale	posizione longitudinale, cassa	$x_{LM,WK}^*$	[m]	-0,900	-0,900
	base trasversale (cinematica alesatura)	$2b_{LM}^*$	[m]	0,000	0,000
	altezza, organo di rotolamento	$z_{LM,FW}^*$	[m]	0,305	0,305
	altezza, cassa	$z_{LM,WK}^*$	[m]	0,305	0,305
Rigidità del	per organo di rotolamento, secondaria, longitudi-	$c_{x,LM}^*$	[N/mm]	10 000	10 000
trascinamento longitudi-	nale				
nale					
Sospensione	posizione longitudinale	<i>x</i> *	[m]	0,000	0,000
	base trasversale	2 <i>b</i> *	[m]	1,500	1,500
	altezza	z *	[m]	0,768	0,768
Rigidità di sospensione	per ogni lato dell'organo di rotolamento, secon- daria, longitudinale	$c_{x,SF}^*$	[N/mm]	200	200
	per ogni lato dell'organo di rotolamento, secon- daria, trasversale	$c_{y,SF}^*$	[N/mm]	400	400
	per ogni lato dell'organo di rotolamento, secon- daria, verticale	$c_{z,SF}^*$	[N/mm]	4800	4800
Cassa	Rigidità di torsione	c_{tS}^*	[N/mm]	100	000


Massa

Massa	organo di rotolamento: non sospeso, per sala	$m_{FW,1}^0$	[kg]	2170	2170
	montata, primario	$m_{FW,2}^0$	[kg]	2170	2170
	organo di rotolamento: primario sospeso per organo di rotolamento	m_{FW}^+	[kg]	3141	3141
	organo di rotolamento: secondario sospeso per organo di rotolamento	m_{FW}^*	[kg]	0	0
	cassa: secondaria sospesa per cassa	m_{WK}^*	[kg]	170	040
Centro di gravità	organo di rotolamento: non sospeso per organo	$x_{SP,FW}^0$	[m]	-0,200	-0,200
	di rotolamento	$y_{SP,FW}^0$	[m]	0,000	0,000
		$z_{SP,FW}^0$	[m]	0,395	0,395
	organo di rotolamento: primario sospeso per or-	$\chi_{SP,FW}^+$	[m]	-0,199	-0,199
	gano di rotolamento	$y_{SP,FW}^+$	[m]	0,005	0,005
		$z_{SP,FW}^+$	[m]	0,501	0,501
	organo di rotolamento: secondario sospeso per	$x_{SP,FW}^*$	[m]	0,000	0,000
	organo di rotolamento	$y_{SP,FW}^*$	[m]	0,000	0,000
		$z_{SP,FW}^*$	[m]	0,711	0,711
	cassa: secondaria sospesa per cassa	$x_{SP,WK}^*$	[m]	0,0)59
		$y_{SP,WK}^*$	[m]	0,0)16
		$z_{SP,WK}^*$	[m]	1,4	192

Contatto ruota-rotaia

Rotaia	Profilo	PD	[-]	EN 13674 46E1
	Inclinazione di posa	1: i	[-]	20
	Larghezza del sostegno		[mm]	1064,0
	Scartamento	\boldsymbol{b}_{w}	[mm]	1000,0
Ruota	Profilo	WP	[-]	RTE 29500 Tipo A h28 e27
	Distanza circonferenza di misurazione	S	[mm]	1050,0
	Scartamento	S_m	[mm]	990,0
Coefficiente di attrito	Superficie di rotolamento	μ_T	[-]	0,300
	Fianco del bordino	μ_F	[-]	0,150

Ingranaggio

		V			A valle	A monte
Descrizione	Nota		Simbolo	Unità	He	4/4
					1	
					DG	DG
					2	1

Contatto ruota dentata-crema-

g	lie	ra

giicia				
Cremagliera	Numero di lamelle	n_L	[-]	1
	Passo del dente	p	[mm]	100
	Angolo normale di ingranamento (pendenza dei	α_n	[rad]	0,245
	fianchi dei denti)			
	Altezza della linea primitiva al di sopra del SOK	h_n	[mm]	66,500
	Altezza effettiva della linea di testa al di sopra del	$h_{k,e}$	[mm]	86,000
	SOK			
	Altezza effettiva della linea di piede al di sopra	$h_{f,e}$	[mm]	47,000
	del SOK			
Coefficiente di attrito	Ruota dentata-cremagliera	μ_Z	[-]	0,150

Motore

Carcassa del motore (so-	Massa	m	[kg]	961,7	961,7	961,7	961,7
speso a naso)							
Sostegno del mo-	Punto di accoppiamento organo di rotolamento	x	[mm]	1154	-1154	1154	-1154
mento di rotazione		у	[mm]	0	0	0	0
		Z	[mm]	273	273	273	273
	Punto di accoppiamento motore	x	[mm]	1154	-1154	1154	-1154
		y	[mm]	0	0	0	0
		z	[mm]	73	73	73	73
Statore	Massa	m	[kg]	386,7	386,7	386,7	386,7
Rotore	Massa	m	[kg]	193,3	193,3	193,3	193,3
	Inerzia di massa	J_{yy}	[kgm²]	1,750	1,750	1,750	1,750
	Punto di accoppiamento	x	[mm]	834	-834	834	-834
		y	[mm]	256	-256	256	-256
		z	[mm]	0	0	0	0
Albero 0	Massa	m	[kg]	113.7	113.7	113.7	113.7
	Inerzia di massa	J_{yy}	[kgm²]	2,502	2,502	2,502	2,502
Ruota dentata 1	Punto di accoppiamento	x	[mm]	834	-834	834	-834
		y	[mm]	-303	303	-303	303
		z	[mm]	0	0	0	0
	Numero di denti	n_Z	[-]	21	21	21	21
Albero 1	Massa	m	[kg]	24,2	24,2	24,2	24,2
	Inerzia di massa	J_{yy}	[kgm²]	0.163	0.163	0.163	0.163
Ruota dentata 2	Punto di accoppiamento	x	[mm]	647,277	-647,277	647,277	-647,277
		y	[mm]	-303	303	-303	303
		z	[mm]	-21,872	-21,872	-21,872	-21,872
	Numero di denti	n_Z	[-]	50	50	50	50
Albero 2	Massa	m	[kg]	56,7	56,7	56,7	56,7
	Inerzia di massa	J_{yy}	[kgm²]	0,718	0,718	0,718	0,718
Ruota dentata 4	Punto di accoppiamento	x	[mm]	317	-317	317	-317

		у	[mm]	-303	303	-303	303
		z	[mm]	0	0	0	0
	Numero di denti	n_Z	[-]	76	76	76	76
Ruota dentata 7 (Z)	Punto di accoppiamento	x	[mm]	317	-317	317	-317
		у	[mm]	-210	210	-210	210
		z	[mm]	0	0	0	0
	Numero di denti	n_Z	[-]	24	24	24	24
Sala montata (ruote)	Massa	m	[kg]	386.8	386.8	386.8	386.8
	Inerzia di massa	J_{yy}	[kgm²]	35.202	35.202	35.202	35.202
Albero 4 (Z)	Massa	m	[kg]	599.1	599.1	599.1	599.1
	Inerzia di massa	J_{yy}	[kgm²]	11.305	11.305	11.305	11.305
Ruota dentata 8	Punto di accoppiamento	x	[mm]	0	0	0	0
		y	[mm]	-210	210	-210	210
		z	[mm]	0	0	0	0
	Numero di denti	n_Z	[-]	100	100	100	100
Sospensione tangen-	Rigidità di torsione	c_t	[kNm/rad]	473,7	473,7	473,7	473,7
ziale							
Albero della ruota den-	Massa	m	[kg]	85,8	85,8	85,8	85,8
tata	Inerzia di massa	J_{yy}	[kgm²]	6,705	6,705	6,705	6,705
Ruota dentata	Punto di accoppiamento	x	[mm]	0	0	0	0
		y	[mm]	0	0	0	0
		z	[mm]	0	0	0	0
	Diametro primitivo	d_n	[mm]	636,620	636,620	636,620	636,620
	Diametro di testa, effettivo	$d_{k,e}$	[mm]	696,823	696,823	696,823	696,823
	Diametro di piede, effettivo	$d_{f,e}$	[mm]	617,612	617,612	617,612	617,612
	Numero di denti	n_Z	[-]	20	20	20	20

Scenari

				A valle			Aillonte
Descrizione	Nota	Simbolo	Unità	TT	He 4/4		ТВ
				2		1	1
					DG	DG	
					2	1	

Scenario 1					Sc	olo	
Geometria del veicolo	Distanza dei perni distanza totale del carrello	2a*	[m]	0,000	5,4	130	0,000
	Aggetto del veicolo	ü	[m]	0,000	3,750	3,350	0,000
	Lunghezza dell'aggancio	a_K	[m]	0,000	1,000	1,000	0,000
	Altezza dell'aggancio	z_K	[m]	0,000	0,500	0,500	0,000
Massa del veicolo	Massa, trasl.	m_{trans}	[kg]	0,0	32 0	0,00	0,0
	Massa, rot.	m_{rot}	[kg]	0,0	40 5	36.1	0,0
Trazione/frenatura	Resistenza al moto	w	[-]	0,000	0,0	008	000,0
	Forza di frenatura della ruota, per sala montata	F_{BR1}	[N]	0	0	0	0
	cassa	F_{BR2}	[N]		0	0	
	Forza di trazione del motore, per sala montata	F_{TM1}	[N]	0	0	0	0
	cassa	F_{TM2}	[N]		0	0	
	Forza di frenatura del motore, per sala montata	F_{BG1}	[N]	0	150 000	75 000	0
	cassa	F_{BG2}	[N]		150 000	150 000	
Corsa+tratta	Raggio di curvatura	R	[m]	-80			
	Sopraelevazione	u	[mm]		-<	30	
	Pendenza del binario	N	[‰]		2	30	
	Velocità di marcia	v	[km/h]		-3	3.6	
Vento laterale	Velocità del vento	v_W	[km/h]	0,0			
	Densità dell'aria	$ ho_L$	[kg/m³]		0,0)00	

Scenario 2					Solo (+	vento)		
Geometria del veicolo	Distanza dei perni distanza totale del carrello	2a*	[m]	0,000	5,4	30	0,000	
	Aggetto del veicolo	ü	[m]	0,000	3,750	3,350	0,000	
	Lunghezza dell'aggancio	a_K	[m]	0,000	1,000	1,000	0,000	
	Altezza dell'aggancio	z_K	[m]	0,000	0,500	0,500	0,000	
Massa del veicolo	Massa, trasl.	m_{trans}	[kg]	0,0	32 0	00,0	0,0	
	Massa, rot.	m_{rot}	[kg]	0,0	40 5	36,1	0,0	
Trazione/frenatura	Resistenza al moto	w	[-]	0,000	0,0	08	0,000	
	Forza di frenatura della ruota, per sala montata	F_{BR1}	[N]	0	0	0	0	
	cassa	F_{BR2}	[N]		0	0		
	Forza di trazione del motore, per sala montata	F_{TM1}	[N]	0	0	0	0	
	cassa	F_{TM2}	[N]		0	0		
	Forza di frenatura del motore, per sala montata	F_{BG1}	[N]	0	150 000	75 000	0	
	cassa	F_{BG2}	[N]		150 000	150 000		
Corsa+tratta	Raggio di curvatura	R	[m]	-80				
	Sopraelevazione	u	[mm]		-3	30		
	Pendenza del binario	N	[‰]	230				
	Velocità di marcia	v	[km/h]	-3,6				
Vento laterale	Velocità del vento	v_W	[km/h]	-50,0				
	Densità dell'aria	ρ_L	[kg/m ³]		1,2	200		

				A valle			A monte
Descrizione	Nota	Simbolo	Unità	TT	He	4/4	ТВ
				2	,	1	
					DG	DG	
					2	1	

Scenario 3				Compo	sizione (+d	iscesa non	frenata)
Geometria del veicolo	Distanza dei perni distanza totale del carrello	2a*	[m]	0,000	5,4	130	5,430
	Aggetto del veicolo	ü	[m]	0,000	3,750	3,350	3,750
	Lunghezza dell'aggancio	a_K	[m]	0,000	1,000	1,000	1,000
	Altezza dell'aggancio	z_K	[m]	0,000	0,500	0,500	0,500
Massa del veicolo	Massa, trasl.	m_{trans}	[kg]	0,0	32 0	0,00	32 000,0
	Massa, rot.	m _{rot}	[kg]	0.0	40 5	36,1	40 536,1
Trazione/frenatura	Resistenza al moto	w	[-]	0,000	0,0	008	0,008
	Forza di frenatura della ruota, per sala montata	F_{BR1}	[N]	0	0	0	0
	cassa	F_{BR2}	[N]		0	0	
	Forza di trazione del motore, per sala montata	F_{TM1}	[N]	0	0	0	0
	cassa	F_{TM2}	[N]		0	0	
	Forza di frenatura del motore, per sala montata	F_{BG1}	[N]	0	150 000	75 000	0
	cassa	F_{BG2}	[N]		150 000	150 000	
Corsa+tratta	Raggio di curvatura	R	[m]		-8	30	
	Sopraelevazione	u	[mm]		-<	30	
	Pendenza del binario	N	[‰]	230			
	Velocità di marcia	v	[km/h]	-3,6			
Vento laterale	Velocità del vento	v_W	[km/h]	0,0			
	Densità dell'aria	ρ_L	[kg/m³]		0,0	000	

Scenario 4				Composi	zione (+dis	cesa frenat	a, +vento)
Geometria del veicolo	Distanza dei perni distanza totale del carrello	2a*	[m]	0,000	5,4	130	5,430
	Aggetto del veicolo	ü	[m]	0,000	3,750	3,350	3,750
	Lunghezza dell'aggancio	a_K	[m]	0,000	1,000	1,000	1,000
	Altezza dell'aggancio	z_K	[m]	0,000	0,500	0,500	0,500
Massa del veicolo	Massa, trasl.	m _{trans}	[kg]	0.0	32'0	0.00	32'000.0
	Massa, rot.	m_{rot}	[kg]	0,0	40 5	36,1	40 536,1
Trazione/frenatura	Resistenza al moto	w	[-]	0,000	0,0	008	0,008
	Forza di frenatura della ruota, per sala montata	F_{BR1}	[N]	0	0	0	0
	cassa	F_{BR2}	[N]		0	0	
	Forza di trazione del motore, per sala montata	F_{TM1}	[N]	0	0	0	200 000
	cassa	F_{TM2}	[N]		0	0	
	Forza di frenatura del motore, per sala montata	F_{BG1}	[N]	0	150 000	75 000	0
	cassa	F_{BG2}	[N]		150 000	150 000	
Corsa+tratta	Raggio di curvatura	R	[m]		-8	30	
	Sopraelevazione	u	[mm]		-	30	
	Pendenza del binario	N	[‰]		2	30	
	Velocità di marcia	v	[km/h]	-3,6			
Vento laterale	Velocità del vento	v_W	[km/h]	-50,0			
	Densità dell'aria	ρ_L	[kg/m³]		1,2	200	

6.2.2 Risultati di riferimento

			A valle							A monte	
Descrizione	Simbolo	Unità	He 4/4								
				DG 2 DG 1							
			RS	RS 2 RS 1 RS 2 RS 1							
			l r l r				ı	r	I	r	

Scenario 1						Sc	olo			
Stato iniziale	Q_0	[kN]	36,609	34,749	42,321	41,452	37,385	35,525	43,374	42,505
$R = u = N = v = a = v_w = F_{T B} = 0$	Δq_0	[%]	-2,6%		-1,0%		-2,6%		-1,	0%
Contatto della cremagliera	$\overline{\mu}_{Z,y,qst}$	[-]	-0,050		0,035		-0,050		0,0	35
	$\overline{\mu}_{Z,z,qst}$	[-]	0,070 0,073		0,076)76	0,0	68	
Forza della cremagliera	$Z_{x,qst}$	[kN]	87,774		87,758		87,771		12,507	
	$Z_{y,qst}$	[kN]	-4,367 3,042		-4,349		0,4	35		
	$Z_{z,qst}$	[kN]	28,	611	28,895		29,128		4,0	46
Sollecitazione del binario	$T_{x,qst}$	[kN]	-0,548	-0,152	-0,451	-0,607	-0,585	-0,485	-0,442	-0,685
	Y_{qst}	[kN]	-9,298	17,060	-16,461	9,254	-7,365	6,858	-1,577	1,676
	Q_{qst}	[kN]	26,164	46,919	25,957	26,044	20,763	19,848	44,421	5,170
Sicurezza contro il deraglia-	$Y/Q _{qst}$	[-]	-0,355	0,364	-0,634	0,355	-0,355	0,346	-0,035	0,324
mento	$\Delta Q/\overline{Q}_0 _{qst}$	[-]	-0,267	0,315	-0,380	-0,378	-0,430	-0,456	0,034	-0,880
	$\Delta \mathbf{z}_{R,qst}$	[mm]	-0,281	0,281	0,318	-0,282	-0,274	0,304	0,294	-0,252

Scenario 2			Solo (+vento)										
Stato iniziale	Q_0	[kN]	36,609	34,749	42,321	41,452	37,385	35,525	43,374	42,505			
$R = u = N = v = a = v_w = F_{T B} = 0$	Δq_0	[%]	-2,6%		-1,0%		-2,6%		-1,	0%			
Contatto della cremagliera	$\overline{\mu}_{Z,y,qst}$	[-]	-0,050		0,035		-0,050		0,0)35			
	$\overline{\mu}_{Z,z,qst}$	[-]	0,0	0,070 0,073		0,076		0,0	068				
Forza della cremagliera	$Z_{x,qst}$	[kN]	87,	775	87,	759	87,773		12,	507			
	$Z_{y,qst}$	[kN]	-4,3	367	3,042		-4,350		0,43				
	$Z_{z,qst}$	[kN]	28,	612	28,895		29,125		4,0)47			
Sollecitazione del binario	$T_{x,qst}$	[kN]	-0,541	-0,168	-0,438	-0,613	-0,565	-0,509	-0,429	-0,692			
	Y_{qst}	[kN]	-9,709	16,462	-17,118	8,694	-8,617	7,173	-2,179	1,047			
	Q_{qst}	[kN]	27,313	45,732	27,461	24,480	24,261	16,320	45,949	3,649			
Sicurezza contro il deraglia-	$Y/Q _{qst}$	[-]	-0,355	0,360	-0,623	0,355	-0,355	0,440	-0,047	0,287			
mento	$\Delta Q/\overline{Q}_0 _{qst}$	[-]	-0,234	0,282	-0,344	-0,416	-0,335	-0,552	0,070	-0,915			
	$\Delta \mathbf{z}_{R,qst}$	[mm]	-0,282	0,282	0,316	-0,280	-0,277	0,308	0,293	-0,249			

A valle A monte

			A valic							A IIIOIIIC					
Descrizione	Simbolo	Unità	He 4/4								He 4/4				
				DO	3 2		DG 1								
			RS	RS 2 RS 1			RS	S 2	RS	S 1					
			1	r		r	1	r		r					

Scenario 3 Composizione (+discesa non frenata)

Scenario 3		Composizione (+discesa non frenata)								
Stato iniziale	Q_0	[kN]	36,609	34,749	42,321	41,452	37,385	35,525	43,374	42,505
$R = u = N = v = a = v_w = F_{T B} = 0$	Δq_0	[%]	-2,6%		-1,0%		-2,6%		-1,0%	
Contatto della cremagliera	$\overline{\mu}_{Z,y,qst}$	[-]	-0,050		0,035		-0,043		0,043	
	$\overline{\mu}_{Z,z,qst}$	[-]	0,071 0,073)73	0,076		0,070		
Forza della cremagliera	$Z_{x,qst}$	[kN]	123,701		123,685		123,689		48,489	
	$Z_{y,qst}$	[kN]	-6,·	153	4,288		-5,278		2,072	
	$Z_{z,qst}$	[kN]	40,	40,378 40,706		41,141		15,770		
Sollecitazione del binario	$T_{x,qst}$	[kN]	-0,148	0,169	-0,077	-0,248	-0,248	-0,035	-0,185	-0,175
	Y_{qst}	[kN]	-9,133	14,652	-17,846	4,968	-4,286	17,311	5,463	9,957
	Q_{qst}	[kN]	25,629	40,282	19,222	13,963	12,055	22,555	22,103	9,330
Sicurezza contro il deraglia-	$Y/Q _{qst}$	[-]	-0,356	0,364	-0,928	0,356	-0,356	0,767	0,247	1,067
mento	$\Delta Q/\overline{Q}_0 _{qst}$	[-]	-0,282	0,129	-0,541	-0,667	-0,669	-0,381	-0,485	-0,783
	$\Delta \mathbf{z}_{R,qst}$	[mm]	-0,280	0,286	0,326	-0,267	-0,265	0,312	-0,269	0,320

Scenario 4 Composizione (+discesa frenata, +vento)

Stato iniziale	Q_0	[kN]	36,609	34,749	42,321	41,452	37,385	35,525	43.374	42,505
Stato Illiziale	Α0	[KIN]	30,003	54,145	42,021	71,702	37,000	00,020	40,014	42,000
$R = u = N = v = a = v_w = F_{T B} = 0$	Δq_0	[%]	-2,6%		-1,0%		-2,6%		-1,0%	
Contatto della cremagliera	$\overline{\mu}_{Z,y,qst}$	[-]	-0,050		0,035		-0,050		0,035	
	$\overline{\mu}_{Z,z,qst}$	[-]	0,0)71	0,073		0,076		0,068	
Forza della cremagliera	$Z_{x,qst}$	t [kN] 109,787 109,771		,771	109,784		34,665			
	$Z_{y,qst}$	[kN]	-5,	461	3,8	306	-5,439		1,206	
	$Z_{z,qst}$	[kN]	35,	819	36,131		36,437		11,217	
Sollecitazione del binario	$T_{x,qst}$	[kN]	-0,297	0,047	-0,215	-0,388	-0,343	-0,208	-0,288	-0,440
	Y_{qst}	[kN]	-9,365	15,967	-17,225	6,291	-6,962	11,922	4,662	1,214
	Q_{qst}	[kN]	26,301	42,309	22,656	17,700	19,573	17,542	34,827	3,677
Sicurezza contro il deraglia-	$Y/Q _{qst}$	[-]	-0,356	0,377	-0,760	0,355	-0,356	0,680	0,134	0,330
mento	$\Delta Q/\overline{Q}_0 _{qst}$	[-]	-0,263	0,186	-0,459	-0,577	-0,463	-0,519	-0,189	-0,914
	$\Delta \mathbf{z}_{R,qst}$	[mm]	-0.281	0.284	0.322	-0.272	-0.273	0.310	0.299	-0.248