

Landquart, 12. Januar 2018

Systemführung ZBMS

Projektierungsgrundlagen Zugbeeinflussung

für Eisenbahnunternehmen, welche eine Zugbeeinflussung gemäss ZBMS einsetzen

Version: Nr. 2.0

Inkraftsetzung: 01. Februar 2018

Dokument-Nummer: 21187

Rhätische Bahn

erstellt:

geprüft / verifiziert:

Freigabe:

Pierre-Yves Kalbfuss

P-Y Wffun

P-PE-VZ

Urs Deragisch Leiter I-EA-SA Christian Florin Leiter Infrastruktur

Dokumentinformation

Version	Datum	Ersteller	Änderungshinweise
1.0	11.10.2016	Pierre-Yves Kalbfuss (RhB) Rico Zanchetti (RhB) Samuel Keller (RhB) Stefan Sidler (Siemens) Hansueli Reich (AB)	Erstausgabe
1.1	01.05.2017	Pierre-Yves Kalbfuss (RhB)	Titel angepasst
2.0	12.01.2018	Pierre-Yves Kalbfuss (RhB) Rico Zanchetti (RhB) Stefan Sidler (Siemens) Hansueli Reich (AB)	Weiterentwickelte Ausgabe

Seite 2 01.02.2018

Inhaltsverzeichnis

1 1.1	Allgemeines Ziele der Regelung	
1.2	Anwendungsbereich	
1.3	Umsetzung des Standards ZBMS	
2	Grundlagen	7
2.1	Hoheitliche Regelungen	
2.2	RTE-Regelungen	7
3	Abkürzungen und Begriffe	9
3.1	Abkürzungen	9
3.2	Begriffe	9
4	Streckenausrüstung	13
4.1	Systemkomponenten	
4.2	Aufstellung der Eurobalisen	14
4.3	Verkabelung zum ETCS-Streckengerät	19
4.4	Installation der Euroloop-Komponenten	. 20
5	Fahrzeugausrüstung	23
5.1	Fahrzeugrechner	
5.2	Bedien- und Anzeigegerät	
5.3	Externe Quittierungstaste	
5.4	Überbrückungsschalter	
5.5	ETCS-Antenne	
5.6	Magnetempfänger	26
5.7	Wegimpulsgeber	26
5.8	Ausgänge	26
6	Auslegung des Systems	27
6.1	Art der Überwachung	
6.2	Wechsel der Überwachungsart	
6.3	Fahrerlaubnis (MA)	
6.4	Geschwindigkeitsprofil (SSP)	
6.5	Neigung	35
6.6	Befreiung	36
6.7	Loop-Ankündigung	41
6.8	Höchstgeschwindigkeiten in Personalverantwortung	
6.9	Rangieren	
6.10	Linking	
6.11	Vertrauensintervall / Erwartungsfenster	
6.12	Zielpunkt der Fahrerlaubnis	
6.13	Durchrutschwege	
6.14	Fahrbegriff-Tiefhaltung	
6.15	Massnahmen bei knapper Vorsignaldistanz	
6.16	Fehlendes Vorsignal	
6.17	Besetzte Einfahrt	
6.18	Einfahrt in einen Bahnhof ohne schienenfreie Zugänge	
6.19 6.20	Rückfall-Fahrbegriffe	
6.20 6.21	Gestörte Bahnübergangsanlage	
U.∠ I	Hilfssignal	บา

6.22	Strassenbahnbereich	63
6.23	Vorübergehende Langsamfahrstellen	63
6.24	Punktförmige Überwachung mit Eurobalisen	64
6.25	Abgestellte Fahrzeuge	
6.26	Betriebsartumschaltung mittels Balisengruppe	
6.27	Betriebsartumschaltung mit Magneten	66
6.28	Geschwindigkeitsüberwachung auf Zahnstangenabschnitten	
6.29	Default- und Störungs-Telegramme	
6.30	Abfahrtverhinderung bei Normalspurzügen	
7	Systemintegration beim Betreiber	69
7.1	Voraussetzungen	
7.2	Projektierung der Streckenausrüstung	
7.3	Montage, Inbetriebsetzung	71
7.4	Projektierung der Fahrzeugausrüstung	72
7.5	Bremsmodelle	
7.6	Betriebsvorschriften	77
7.7	Schulungen	

1 Allgemeines

1.1 Ziele der Regelung

Im vorliegenden Dokument werden die Projektierungsregeln der Zugbeeinflussung Meterspur (ZBMS) festgelegt. Als Grundlage gilt der durch das Bundesamt für Verkehr am 24. Juni 2013 erlassene nationale Standard Zugbeeinflussung für Bahnen, die nicht zu ETCS migrieren. Diese Projektierungsgrundlagen sollen eine optimale Umsetzung der im Standard definierten Systemfunktionen in der kontinuierlichen Überwachung ermöglichen.

Diese Projektierungsgrundlagen richten sich an die Projektleiter der Eisenbahnunternehmen und Lizenznehmer. Voraussetzung für eine optimale Auslegung ist eine Grundkenntnis des ZBMS-Standards und des eingesetzten Systems.

1.2 Anwendungsbereich

Diese Projektierungsgrundlagen sind bei der Auslegung von Strecken- und Fahrzeugausrüstungen einzusetzen, die den Standard ZBMS erfüllen müssen.

Für die Verwirklichung des Projektes durch den Systemlieferant müssen aber die Projektierungsrichtlinien des System-Herstellers zusätzlich beachtet werden.

Die Streckenausrüstung und die Überwachungsfunktionen des Systems sind im Standard eingehend festgelegt. In diesem Dokument wird deren Verwirklichung vertieft festgehalten.

Bei der Fahrzeugausrüstung wird dem Standard ZBMS entsprechend auf allgemein gültige Eigenschaften verwiesen.

Die punktförmige Überwachung mittels Magneten wird in diesen Projektierungsgrundlagen nicht behandelt. Die Projektierungsgrundlagen des bestehenden Systems sind ebenfalls zu berücksichtigen. Nur die Projektierung der in der Migration erforderlichen Wechsel der Überwachungsart wird aufgeführt.

1.3 Umsetzung des Standards ZBMS

In verschiedenen Abbildungen ist die Anzeige am Anzeigegerät im Führerstand aufgeführt. Diese Darstellung stützt sich auf das aktuelle Anzeigekonzept nach Standard ZBMS, das bei neuen Anwendungen einzusetzen ist. Einzelne Eisenbahnunternehmen wenden weiterhin das ursprüngliche Anzeigekonzept an.

In den Projektierungsunterlagen wird die Überwachung der Zuglänge allgemein gefordert. Bei einzelnen Eisenbahnunternehmen wird aufgrund der Entwicklungsgeschichte des Systems die anfänglich nicht überwachte Zuglänge weiterhin nicht überwacht.

Seite 6 01.02.2018

2 Grundlagen

2.1 Hoheitliche Regelungen

Als übergeordnete hoheitliche Regelungen gelten insbesondere:

- Verordnung über Bau und Betrieb der Eisenbahn (EBV, SR 742.141.1)
- Ausführungsbestimmungen zur Eisenbahnverordnung (AB-EBV, SR 742.141.11)
- Schweizerische Fahrdienstvorschriften (FDV, SR 742.173.001)
- Nationaler Standard: Zugbeeinflussung für Bahnen, welche nicht zu ETCS migrieren (ZBMS-Standard).

2.2 RTE-Regelungen

Als Grundlage gilt das Kompendium Sicherungsanlagen R RTE 25000 bis 25064 insbesondere:

R RTE 25036 Zugbeeinflussung.

Seite 8 01.02.2018

3 Abkürzungen und Begriffe

3.1 Abkürzungen

BG Balise Group Eurobalisengruppe
BAV Bundesamt für Verkehr

ELM Euroloop-Modem Euroloop-Modem

ETCS European Train Control System Europäisches Zugbeeinflussung- und

Zugsteuerungssystem

FS Full Supervision Betriebsart "Vollüberwachung"

GP Gradient Profile Neigungsprofil

IS Isolation Betriebsart "abgetrennt"

LEU Lineside Electronic Unit ETCS-Streckengerät

MA Movement Authority Fahrerlaubnis

NL Non Leading Betriebsart "nicht zugführend"

SH Shunting Betriebsart "rangieren"
SL Sleeping Betriebsart "ferngesteuert"

SR Staff Responsible Betriebsart "Fahrt in Personalver-

antwortung"

SSP Static Speed Profile statisches Geschwindigkeitsprofil
TSR Temporary Speed Restriction temporare Langsamfahrstellen

UN Unfitted Betriebsart "punktuell überwacht mit

Magneten" oder "punktuell überwacht mit Eurobalisengruppen"

ZBMS Zugbeeinflussung Meter- und Spe- Nationaler Standard für die Zugbe-

zialspur einflussung für Bahnen, welche nicht

zu ETCS migrieren

3.2 Begriffe

Abgetrennt In der Betriebsart "abgetrennt" (IS) hat die Zugbeeinflus-

sung keine Verbindung mehr nach aussen und die Bremsausgänge der Zugbeeinflussung sind inaktiv geschaltet.

Fahrerlaubnis Die Fahrerlaubnis (MA) ist der Teil der Daten aus dem

Telegramm einer Eurobalisengruppe, welcher die Fahrt in einen Gleisabschnitt erlaubt. Die Fahrerlaubnis gibt der Fahrzeugausrüstung die Distanz an, welche der Zug befahren darf. In der Regel entspricht die im System generierte Fahrerlaubnis der durch das Zugsignal angezeigten Zustimmung zur Fahrt bis zum nächsten Haupt-

signal.

Fahrt in

Personalverantwortung

Die Betriebsart "Fahrt in Personalverantwortung" (SR) entspricht einer Teilüberwachung. Die Fahrt in der Personalverantwortung wird eingenommen, wenn keine Fahrerlaubnis von einer Infrastrukturausrüstung übermittelt wurde oder wenn nach Wenden eine Aufwertung durch einen Euroloop erfolgt. Das Fahrzeug wird von der Zugbeeinflussung auf eine festgelegte Geschwindigkeit überwacht. Die Position des Fahrzeugs, und damit die Länge

der Fahrerlaubnis, werden nicht überwacht.

Ferngesteuert In der Betriebsart "ferngesteuert" (SL) ist kein Lokführer

auf dem Triebfahrzeug oder dem Steuerwagen, welches/welcher nicht als vorderstes Triebfahrzeug des

Zuges eingereiht ist.

Infill Bezeichnung einer Eurobalisengruppe für die Übertra-

gung einer Fahrerlaubnis zur Befreiung aus der Brems-

kurve im Gleisbereich vor dem Hauptsignal.

Kontinuierliche Punktuelle oder kontinuierliche Übertragung von Informa-Überwachung tionen auf das Fahrzeug mit kontinuierlicher Überwa-

tionen auf das Fahrzeug mit kontinuierlicher Überwachung von Bedingungen, die sich abhängig vom Standort des Fahrzeugs verändern können. Reaktion der Zugbeeinflussung, sobald diese Bedingungen nicht eingehalten

sind.

Linking Logische Verknüpfung von Eurobalisengruppen unterei-

nander

Magnete Für die punktuelle Überwachung stehen heute verschie-

dene Zugbeeinflussungssysteme mit spezifischen Permanent- und Elektromagneten im Einsatz. Die Information wird mittels einer Kombination der Nord- und Südpole der

Magnete auf die Fahrzeuge übertragen.

Nicht Zugführend In der Betriebsart "nicht zugführend" (NL) bedient ein

Lokführer ein Triebfahrzeug oder einen Steuerwagen, welches/welcher nicht als vorderstes Triebfahrzeug des

Zuges eingereiht ist.

Punktuelle Überwachung Punktuelle Übertragung von Informationen auf das Fahr-

zeug mit unmittelbarer Reaktion der Zugbeeinflussung auf

die momentan aktuelle Information.

Rangieren Die Betriebsart "rangieren" (SH) wird für Rangierbewe-

gungen im Bahnhof und auf der Strecke verwendet. Der zulässige Abschnitt kann von der Zugbeeinflussung vorgegeben werden. Durch die Zugbeeinflussung wird die maximal zulässige Geschwindigkeit für die Rangierbewe-

gung überwacht.

Seite 10 01.02.2018

Repositioning

Genaue Erfassung der Fahrzeugposition zwecks

- fahrwegabhängige Korrektur der Fahrerlaubnis bei unterschiedlich entfernten Zielpunkten sowie
- Rückstellung des fahrwegabhängigen Vertrauensintervalls innerhalb der Fahrerlaubnis.

Nach einer Repositionierung wird die dynamische Bremskurve am Ende der Fahrerlaubnis beziehungsweise vor einer Geschwindigkeitsschwelle auf den neu festgelegten Zielpunkt neu berechnet.

Vertrauensintervall

Fahrwegabhängige Toleranz gegenüber dem tatsächlichen Standort eines Zuges aufgrund der Ungenauigkeiten der Odometrie.

Vollüberwachung

In der Vollüberwachung (FS) werden anhand der Infrastrukturdaten und der eingegebenen Zugdaten das Ende der Fahrerlaubnis und das Einhalten der zulässigen Höchstgeschwindigkeit dauernd überwacht. Die Vollüberwachung kann bei Beginn einer Fahrt frühestens nach Überfahrt der ersten Eurobalisengruppe erfolgen.

Seite 12 01.02.2018

4 Streckenausrüstung

4.1 Systemkomponenten

Die Streckenausrüstung besteht aus Komponenten gemäss untenstehender Abbildung.

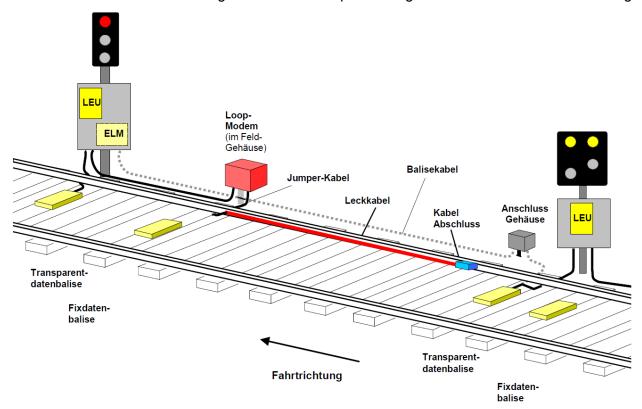


Abbildung 1: Mögliche Auslegung der Streckenkomponenten

Im Normalfall wird eine oder mehrere LEUs zusammen mit dem Euroloop-Modem in einem Relaiskasten am Hauptsignal montiert. Die Eurobalisengruppe beim Vorsignal wird in der Regel von der LEU am Hauptsignal angesteuert. Dies hat den Vorteil, dass spezielle Fahrbegriffe, welche am Vorsignal nicht angezeigt werden können (Einfahrt mit Hilfssignal / Besetztsignal etc.), bereits am Vorsignal über die Balisengruppe dem Fahrzeug übermittelt werden können. Dazu muss eine Kabelverbindung zwischen Vorund Hauptsignal vorhanden sein. In der Abbildung sind beide Einbindungsvarianten des Vorsignals sowie beide üblichen Anordnungsmöglichkeiten des Loop-Modems (ELM) dargestellt.

Werden mit einem Fahrbegriff verschiedene Fahrstrassen angezeigt, kann es vorkommen, dass eine Fahrwegausscheidung benötigt wird. Die Kriterien müssen in diesem Fall vom Stellwerk abgegriffen werden und zum entsprechenden Signal übertragen werden. Nur so kann eine Zugslängenüberwachung oder genaue Geschwindigkeitsschwelle programmiert werden.

4.2 Aufstellung der Eurobalisen

4.2.1 Normalfall

Eine Balisengruppe besteht aus mindestens zwei Eurobalisen. Bei reinen ZBMS-Anwendungen werden immer zwei Eurobalisen eingesetzt. Als Ausnahme wird eine Eichbalisengruppe mit einer einzigen Fixdatenbalise realisiert.

Die erste Eurobalise in der Fahrtrichtung ist immer eine Fixdatenbalise. Sie benötigt keine Verkabelung. Die zweite Eurobalise ist eine Transparentdatenbalise. Sie wird am ETCS-Streckengerät angeschlossen.

Bei Adhäsionsbahnen werden die viereckigen Eurobalisen in der Gleisachse ausgerichtet und in der Querrichtung verlegt.

Der Abstand zwischen den einzelnen Eurobalisen einer Balisengruppe beträgt in der Längsrichtung in der Regel 3 m (technische Grenzwerte bis 160 km/h: Minimum 2.3 m, Maximum 6 m). Die letzte Eurobalise der Balisengruppe wird 1-2 m vor dem zugehörigen ortsfesten Signal aufgestellt.

Der Minimalabstand zwischen Eurobalisen unterschiedlicher aufeinanderfolgenden Balisengruppen beträgt 8 m (Höchstgeschwindigkeit bis 120 km/h). Dieser Minimalabstand ist unabhängig von der Fahrtrichtung.

Kürzere Werte sind bei engen Verhältnissen und niedriger Höchstgeschwindigkeit möglich. Immer einzuhalten ist:

 $s_{min} = 2.6 + 0.03 \cdot v$

Minimalabstand [m] \mathbf{S}_{min}

Höchstgeschwindigkeit [km/h]

Magnete Transparentdatenbalise Fixdatenbalise

Abbildung 2: Aufstellung unter Beibehaltung der Magnete

Bei einem Gruppensignal wird eine Balisengruppe pro Gleis vor dem spätesten Halteort aufgestellt.

Ein Streckenpunkt kann auch nur aus zwei Fixdatenbalisen ohne LEU bestehen. Solche Balisengruppen können fahrtrichtungsabhängige Informationen an das Fahrzeug übermitteln, welche unabhängig von der Signalanlage sind. Dies sind z.B. Ortungsinformationen für das Repositioning, (temporäre) Langsamfahrstellen, Euroloop-Ankündigungen.

Seite 14 01.02.2018

4.2.2 Drei- oder Vierschienengleis

Im Drei- oder Vierschienengleis können die Streckendaten der unterschiedlichen Systeme ZBMS, ETCS L1LS, Euro-ZUB und Euro-Signum durch eine Eurobalisengruppe übertragen werden. In der Regel kann die erforderliche Datenmenge nicht durch eine einzige Transparentdatenbalise übertragen werden. In diesem Fall wird die Balisengruppe durch zwei Transparentdatenbalisen gebildet, damit die unterschiedlichen Datenpakete P44 der Anwendungen ZBMS, Euro-ZUB und Euro-Signum übertragen werden können.

4.2.3 Zahnstange und Hindernisse im Gleis

Die Eurobalisen werden grundsätzlich in der Gleisachse verlegt. Eine seitliche Verschiebung ist bei Hindernissen wie Zahnstange oder Fangschiene nötig. In diesem Fall müssen der seitliche Versatz zur Fahrzeugantenne sowie der metallfreie Raum geprüft werden.

Die Eurobalisen werden grundsätzlich quer zur Gleisachse aufgestellt. Bei engen Platzverhältnissen ist eine Montage in der Längsrichtung möglich.

Abbildung 3: Einbaubeispiel Fangschiene

Der seitliche Versatz wegen der Zahnstange bedingt, dass die Fahrzeugantenne aus der Fahrzeugachse seitlich versetzt wird. Wegen der asymmetrischen Montage können die Fahrzeuge nicht abgedreht werden.

Die Eurobalisen werden im Zahnstangenbereich zwangsläufig längs zur Fahrtrichtung angeordnet.

Grundsätzlich werden die Eurobalisen in den Adhäsionsabschnitten auch entsprechend seitlich versetzt.

Abbildung 4: Einbaubeispiel Zahnstange

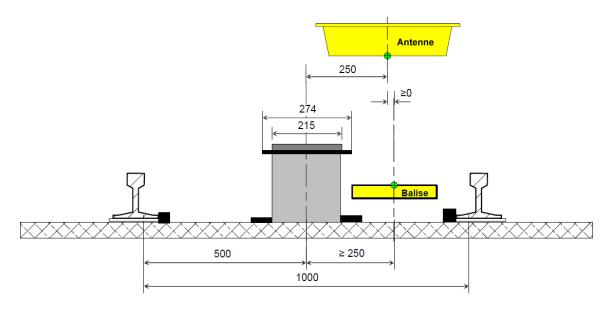


Abbildung 5: Luftspalt im Zahnstangenbereich

Im Zahnstangenbereich werden die Eurobalisen möglichst um 250 mm aus der Gleisachse versetzt. Bei den sehr breiten Leiterzahnstangen System Riggenbach muss der Versatz weiter erhöht werden. Detaillierte Angaben insbesondere die Einbauhöhen sind in den Installationsrichtlinien des Herstellers nachzulesen.

Seite 16 01.02.2018

4.2.4 Abmessungen

Bei der Projektierung ist auf die Minimalabstände von einer Eurobalise gegenüber den ferromagnetischen Elementen sowie gegenüber stromführenden Leitungen zu achten. Insbesondere ist die Einhaltung der Minimalabstände gegenüber Querungen von elektrischen Leitungen im Gleiskörper oder unterhalb der Fahrbahn massgebend.

Die Abmessungen einer Eurobalise und die einzuhaltenden Freiräume können je nach Hersteller unterschiedlich sein. In diesem Abschnitt werden die Abmessungen der Siemens-Eurobalisen S21 als Beispiel aufgezeigt.

Die nachfolgende Zeichnung stellt die wesentlichen Abmessungen einer Eurobalise (Beispiel Eurobalise Siemens S21) dar:

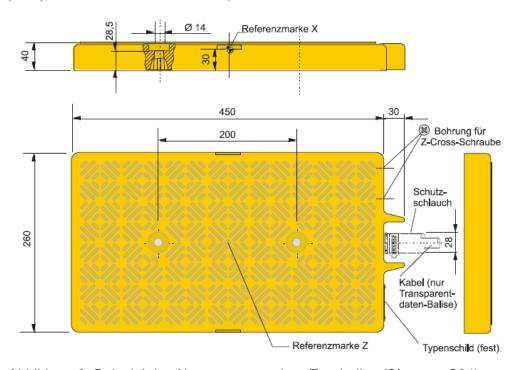


Abbildung 6: Beispiel der Abmessungen einer Eurobalise (Siemens S21)

Freiräume müssen zur Eurobalise eingehalten werden:

- damit das Programmierungsgerät über der Eurobalise aufgesetzt werden kann
- wegen den elektromagnetischen Einflüssen von Eisenteilen und elektrischen Leitern, muss der entsprechende Bereich frei von Eisenteilen und elektrischen Leitungen gehalten werden:
 - Auf die Einhaltung der Freiräume ist insbesondere in der Nähe von Isolierstössen wegen den stromführenden Querungen zu achten.
 - Gegenüber grösseren Stahlkonstruktionen ist ein besonderer Minimalabstand einzuhalten. Beispielsweise kann auf einer Stahlbrücke keine Eurobalise verlegt werden.
 - Bei der Montage auf Stahlschwellen oder ferromagnetischen Trägern ist ein senkrechter Minimalabstand einzuhalten. Bei Siemens beträgt dieser senkrechte Abstand 60 mm von der Referenzmarke x der Eurobalise.

Detaillierte Angaben müssen in der Installationsrichtlinie der Eurobalise des Herstellers nachgelesen werden.

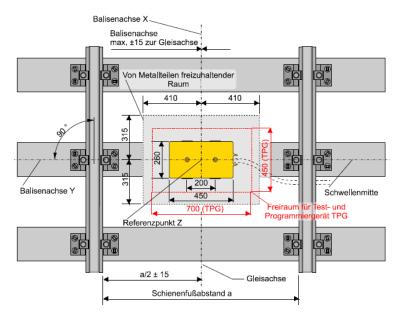


Abbildung 7: Beispiel der Freiräume

4.2.5 Befestigungsarten

Wegen den magnetischen Einflüssen sind die vom Balisen-Hersteller vorgegebenen Befestigungselemente zu verwenden. Die aufgelisteten Befestigungsarten stützen sich als Beispiel auf die Siemens Eurobalisen.

In der Regel wird die Montage der Eurobalisen mit dem VORTOK-Träger vorgenommen. Der VORTOK-Träger ist einsetzbar für die Schienenbefestigungssysteme Ae, Aei oder Aek, Aeki.

Ein VORTOK-Träger ist auch für Gleisabschnitte mit Y-Schwellen verfügbar. Er wird auf einer Seite unter dem Schienenfuss befestigt. Auf der anderen Seite wird der Träger wie üblich mit der Schienenbefestigung verschraubt.

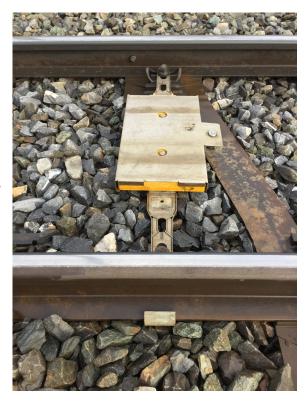


Abbildung 8: Einbaubeispiel Y-Schwellen / Eurobalise mittels Abschirmblech abgedeckt

Seite 18 01.02.2018

In Zahnstangenabschnitten sowie im Bereich von Fangschienen werden die Eurobalisen mit einer Abstandplatte zwischen zwei Schwellen geschraubt.

Abbildung 9: Montagevorrichtung für Zahnstangenbereich

Der seitliche Abstand zur Gleisachse ist durch die Breite der Zahnstange bestimmt. Der Höhenabstand zum Schienenkopf steht in Abhängigkeit mit dem eingesetzten Schienenprofil und der eingesetzten Abstandplatte.

Im Strassenbahnbereich wird ein im Strassenkörper versenkter Einbaurahmen aus Polymerbeton mit Deckel aus demselben Werkstoff eingesetzt.

Detaillierte Angaben müssen in der Installationsrichtlinie der Eurobalise des Herstellers nachgelesen werden

Von der Montage bis zur Inbetriebsetzung werden die Eurobalisen mit einem Abschirmblech abgedeckt. Bei Montage der Eurobalise auf einer Platte dürfen deren Abmessungen das Einrasten des Abschirmbleches unter der Eurobalise nicht verhindern.

4.3 Verkabelung zum ETCS-Streckengerät

4.3.1 Zuleitungslänge

Die Speisung des ETCS-Streckengerätes (LEU) kann über längere Distanzen ab Stellwerk erfolgen. Dabei ist auf den Spannungsabfall in der Leitung und auf den Leitungsschutz bei einem Kurzschluss am Leitungsende zu achten.

4.3.2 Kaskadierung

Die LEU ist standardmässig mit Ausgängen für Eurobalisen und Euroloop- Modems ausgestattet. Werden mehr Ausgänge als vorhanden benötigt, kann die Master-LEU mit Erweiterungseinheiten kaskadiert werden.

4.3.3 Anbindung an das Stellwerk

Die LEU wird direkt beim Signal angeordnet. Die Eingänge werden in den entsprechenden Signalstromkreis in Serie angeschlossen. Vom Stellwerk muss lediglich die Spannungsversorgung zu den jeweiligen Signalen sichergestellt werden.

Die Telegramme werden dann anhand der Anschaltungen der Signallampen generiert. Je nach Fahrbegriff wird ein anderes Telegramm erzeugt.

Es wird empfohlen die Balisengruppe eines Vorsignals an die LEU des zugehörigen Hauptsignals anzuschliessen. Ein alleinstehendes Vorsignal, das mit mehreren Hauptsignalen verknüpft ist, muss aber mit einer eigenen LEU ausgerüstet werden.

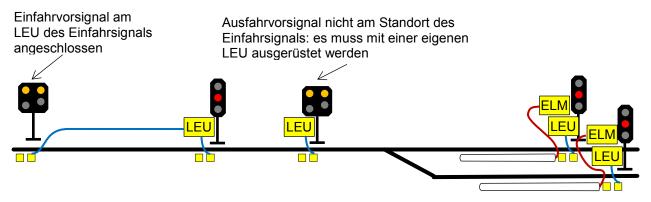


Abbildung 10: Bedarf an LEU

Wenn ein Euroloop verlegt wird, muss an die LEU ein Euroloop-Modem (ELM) angeschlossen werden.

4.3.4 Anbindung an ein elektronisches Stellwerk

Bei elektronischen Stellwerken erfolgt die Datenübertragung vom Stellwerk zu den einzelnen Signalen teilweise seriell (abgesetzter Stellteil). Eine direkte Anbindung der Transparentdaten-Balise an die Datenübertragung bzw. an das abgesetzte Stellteil ist vorteilhaft.

4.4 Installation der Euroloop-Komponenten

4.4.1 Komponenten

Unter den Komponenten des Euroloop versteht man im Wesentlichen:

- Euroloop-Modem (ELM)
- Jumperkabel (Verbindung vom ELM zum Euroloop)
- Leckkabel (Euroloop)
- Loop-Kabelabschluss (LKA).

Der Euroloop kann grundsätzlich in beliebigen Längen installiert werden. Die maximale Länge eines Euroloops beträgt 800 m.

Seite 20 01.02.2018

4.4.2 Montageart

Das Leckkabel wird im Normalfall am Schienenfuss mit Schienenfussklemmen befestigt.

Ist die Befestigung am Schienenfuss durch eingedeckte Gleise oder ähnlichem nicht möglich, so kann auch ein Kunststoffrohr zum Einsatz kommen. Der Werkstoff des Rohres muss isolierend und amagnetisch sein. Im Bereich von Bahnübergängen ist dies die normale Verlegeart.

Allgemein müssen beim Einbau der Loop-Komponenten folgende Punkte beachtet werden:

- Signalkasten:
 - möglichst kurzes Kabel zur Personenschutzerdung an LEU und ELM
 - Interconnect-Kabel mit Klappdrossel versehen
 - Klappdrossel so nahe wie möglich bei der Schrankdurchführung
 - Stecker des Interconnect-Kabels mit Signalkasten verbinden (Durchführung nicht isolieren!)

Jumperkabel:

- Das Jumperkabel soll mindestens 1 m in der Schienenkehle verlegt werden, empfohlen sind 3 m. Dies gilt vor allem bei Querung des Gleises.
- kein überschüssiges Jumperkabel (Reserve) im Schienenbereich liegen lassen
- Es dürfen keine Schlaufen mit dem Jumperkabel gebildet werden.
- Der minimale Biegeradius des Jumperkabels muss eingehalten werden.
- Das Jumperkabel wird rechtwinklig zum Gleis geführt.

Gleisquerung:

- Querungen sind soweit möglich zu vermeiden.
- Das Umgehungskabel wird auf jeder Seite mindestens 1-3 m in der Schienenkehle verlegt.

Hindernisumgehung:

 Grössere Hindernisse wie Weichen, Kreuzungen usw. sind mit Hilfe eines Umgehungskabels zu umfahren.

Leckkabel:

- Es dürfen keine Schlaufen mit dem Leckkabel gebildet werden.
- Die Länge des Leckkabels wird tendenziell abgerundet.
- Beim Verlegen eines geteilten Leckkabels wird immer von der Mitte (Unterbrechungspunkt, Trennstelle) ausgegangen.
- Das Leckkabel wird in der Regel am Schienenfuss in der Aussenkehle verlegt.
 Es kann wahlweise an der rechten oder linken Schiene verlegt werden. Die Gleisseite wird aufgrund der Hindernisse im Gleis (Weiche, Querungen vermeiden) festgelegt.
- Überschneiden sich in einem Gleis die Euroloops beider Fahrtrichtungen, wird ein Leckkabel an jeder Gleisseite verlegt.
- Das Leckkabel darf nicht zerquetscht werden (keine mechanische Belastung).
 Der Einbau muss entsprechend sorgfältig erfolgen.
- Ein Spielraum für die temperaturabhängige Längenausdehnung des Leckkabels muss bei der Verlegung vorgesehen werden.
- Bei Verlegung des Leckkabels bei Temperaturen zwischen -10° und +5°C müssen spezielle Bedingungen eingehalten werden.
- Unter -10°C sollte das Leckkabel nicht verlegt werden.

4.4.3 Gleisunterhalt

Das Leckkabel muss gegen mechanische Beschädigungen geschützt werden. Das heisst, dass bei Unterhaltsarbeiten am Gleis (Schotterablad, Krampen, Schienenschleifen etc.) das Leckkabel ausgebaut werden muss.

Seite 22 01.02.2018

5 Fahrzeugausrüstung

5.1 Fahrzeugrechner

Der Fahrzeugrechner ist in einem Apparatekasten zu montieren, wo er vor Staub und Feuchtigkeit geschützt ist. Es ist auf eine genügende Belüftung zu achten, allenfalls ist eine forcierte Belüftung (Lüfteretage) einzubauen. Für den Unterhalt und das Auslesen der Daten ist auf eine gute Zugänglichkeit zu achten.

Der Fahrzeugrechner besitzt auf der Frontplatte diverse farbige Leuchtdioden, die im Betrieb leuchten oder blinken. Es ist darauf zu achten, dass sich diese Leuchtdioden nicht an der Frontscheibe spiegeln und so den Lokführer irritieren können.

Wenn sich der Apparatekasten im Publikumsbereich befindet, so muss dieser Kasten mit einem Sicherheitsschloss ausgerüstet sein.

Bei sehr langen Fahrzeugen (Triebzügen) müssen auf Grund der maximal zulässigen Länge des Antennenkabels zwei Zentralgeräte eingebaut werden.

5.2 Bedien- und Anzeigegerät

Das Bedien- und Anzeigegerät soll im Sichtfeld des Lokführers montiert sein, möglichst in der Nähe des Tachometers. Beide Geräte können neben- oder übereinander angeordnet sein. Sie sollen aus der normalen Sitzposition des Lokführers heraus gut sichtbar sein und die Bedienung soll hindernisfrei erfolgen können. Dabei soll die Hand bei der Bedienung das Anzeigegerät nicht überdecken.

Abbildung 11: Einbaubeispiel Bedien- und Anzeigegerät

5.3 Externe Quittierungstaste

Während der Migrationsphase von punktueller zu kontinuierlicher Zugüberwachung soll die allenfalls vorhandene bisher verwendete Quittierungstaste weiterhin bestehen bleiben. Die Quittierung über das Bediengerät ist zwar möglich, in aller Regel aber für die häufige Bedienung nicht so optimal platziert.

5.4 Überbrückungsschalter

Der externe Überbrückungsschalter bewirkt (z. B. bei einem Hardware-Defekt) die Überbrückung der Kontakte der Zwangs- und Betriebsbremsen. Der Schalter ist in der Regel plombiert. Die bei Überbrückung einzuhaltenden Bestimmungen sind in den Fahrdienstvorschriften aufgeführt.

Der Überbrückungsschalter darf durch den Lokführer während der Fahrt nicht direkt bedienbar sein. In der Regel wird er in einem Apparatekasten angeordnet.

Bei der Auswahl der Überbrückungsschalter ist darauf zu achten, dass mindestens vier getrennte und unabhängig voneinander betätigte Schaltebenen vorhanden sind (drei Öffner und ein Schliesser).

Bei Fahrzeugen mit zwei Führerständen müssen nicht zwingend zwei Überbrückungsschalter installiert werden.

Der Überbrückungsschalter ist wie der Fahrzeugrechner vor dem Zugriff durch das Publikum zu schützen.

5.5 ETCS-Antenne

5.5.1 Anordnung

Die Balisen-Antenne ist möglichst am Fahrzeugkasten zu montieren. Je nach Fahrzeuggeometrie sind eine oder zwei Antennen notwendig. Ein einteiliges Fahrzeug wird in der Regel mit einer Antenne ausgerüstet. Bei einem mehrteiligen Fahrzeug sind zwei Antennen erforderlich. Die minimale Distanz zwischen Fahrzeugfront und Balisen-Antenne beträgt 2 m. Die maximale Distanz zwischen der ersten Achse des Fahrzeugs und der Balisenantenne beträgt 12.5 m.

Bei der Anordnung ist auf einen möglichst kleinen seitlichen Versatz in Bogen zu achten. Die Antenne ist dazu idealerweise am Fahrzeugkasten unmittelbar vor oder hinter einem Drehgestell anzuordnen. Der Versatz in Bogen wird bei Montage am Drehgestell reduziert. Die Verkabelung ist aber aufwändiger.

Für die Montage der Antenne sind die Vorgaben des Herstellers bezüglich Höhe, seitlichem Versatz und anderen Einbautoleranzen sowie eisenfreien Räumen einzuhalten.

5.5.2 Metallfreier Raum

Der metallfreie Raum der ETCS-Fahrzeugantenne ist in der UNISIG Class 1 Dokumentation verbindlich spezifiziert. Es dürfen sich keine Metallteile in diesem Bereich befinden oder in diesen eindringen.

Die einzuhaltenden Abstände sind:

- minimaler senkrechter Abstand dZa der Antennenoberseite zu Metallobjekten über der Antenne; Elemente der Antennenhalterung sind ausgenommen
- minimaler Abstand dXm der Antennenmitte zu Metallobjekten unterhalb der Antennenunterkante in L\u00e4ngsrichtung. Ausserhalb des Abstandes dXm d\u00fcrfen sich Metallobjekte nicht unterhalb der 45°-Linie befinden
- minimaler Abstand dYm der Antennenmitte zu Metallobjekten unterhalb der Antennenunterkante in Querrichtung. Ausserhalb des Abstandes dYm dürfen sich Metallobjekte nicht unterhalb der 45°-Linie befinden.

Die nominalen Werte der einzuhaltenden Abstände sind den Vorgaben des Herstellers nachzulesen.

Seite 24 01.02.2018

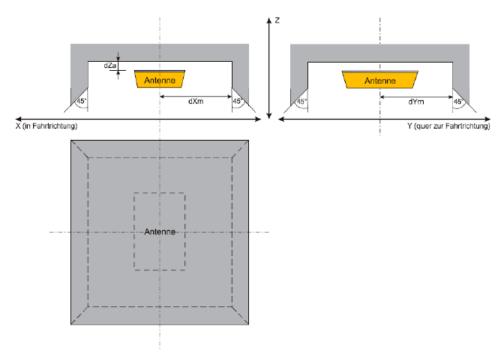


Abbildung 12: Metallfreier Raum unter dem Fahrzeug

Wird der beschriebene Raum unterschritten, ist in vielen Fällen immer noch ein Einsatz des Systems möglich. Hierzu ist durch den Systemlieferant eine detaillierte Analyse der Einbaubedingungen durchzuführen.

5.5.3 Anordnung bei Zahnradfahrzeugen

Bei Zahnradfahrzeugen wird die Fahrzeugantenne ausserhalb der Fahrzeugachse so versetzt, dass der Versatz zur dezentriert angeordneten Eurobalisen im Zahnstangenbereich minimiert wird. In der Regel wird die Fahrzeugantenne um 250 mm aus der Fahrzeugachse verschoben. Die Ausrichtung der Antenne wird für die längs von der Fahrtrichtung angeordneten Eurobalisen optimiert.

5.5.4 Tolerierbarer seitlicher Versatz zwischen Eurobalise und Antenne

Insbesondere in Bogen entsteht ein seitlicher Versatz zwischen einer im Gleis verlegten Eurobalise und der Fahrzeugantenne eines vorbeifahrenden Fahrzeugs. Der maximale Versatz wird durch den Hersteller der Fahrzeugantenne bestimmt. Dieser für die Anordnung der Fahrzeugantenne wichtige Parameter soll aus deren Anleitungen geholt werden.

Bei der Projektierung ist auf die Summierung des statischen Versatzes sowie der aufgrund der Wege der Federung dynamischen Bewegungen zu achten.

5.5.5 Antennenkabel

Die Länge eines Antennenkabels beträgt 4.47 m oder ein Vielfaches davon, maximal aber 35.76 m. Der Grund ist die durch die Wellenlänge (λ /2 = 4.47 m) der Trägerfrequenz verursachten Reflexion. Bei der Montage am Drehgestell ist ein spezielles, flexibles Antennenkabel zu verwenden, welches aber eine reduzierte Störfestigkeit aufweist.

5.6 Magnetempfänger

Je nach Anwendung werden die bisherigen Magnetempfänger benötigt. Mindestens während der Migrationsphase zum neuen Zugbeeinflussungssystem werden Magnetempfänger benötigt.

Es ist mit dem Hersteller zu klären, ob die bisher verwendeten Magnetempfänger mit dem neuen Rechner kompatibel sind. Unter anderem ist die Speisung der Magnetempfänger je nach Bauart unterschiedlich.

Der Mindestabstand zwischen den Magnetempfängern und der Balisen-Antenne beträgt 50 cm. Dabei sind alle bisherigen Einbauvorschriften weiterhin zu beachten.

5.7 Wegimpulsgeber

Es werden Wegimpulsgeber auf zwei unabhängigen Achsen benötigt. Jeder Wegimpulsgeber muss zwei um 90° versetzte Kanäle besitzen, welche galvanisch vom Rest des Fahrzeugs getrennt sind. Die gleichzeitige Nutzung der Impulse durch andere Geräte ist nicht zulässig.

Wenn möglich sind nicht angetriebene Achsen zu verwenden. Ist dies nicht möglich, so sollten nicht führende Achsen bevorzugt werden.

Die Wegimpulsgeber müssen vom Hersteller für diese Anwendung zugelassen sein.

5.8 Ausgänge

Abgesehen vom sicherheitsrelevanten Ausgang für die Zwangsbremsung sowie vom Ausgang für die Betriebsbremse bietet die Zugbeeinflussung zwei weitere Ausgänge für definierte Funktionen. Diese Ausgänge dürfen nicht für sicherheitsrelevante Funktionen verwendet werden. Typische Ausgangsanwendungen sind automatisches Ausschalten vor einer Schutzstrecke oder zusätzliche Summer.

Die benötigten Ausgänge sind konzeptionell gesamthaft zu analysieren und Schnittstellen mit der Fahrzeugsteuerung im Projekt festzulegen.

Seite 26 01.02.2018

6 Auslegung des Systems

6.1 Art der Überwachung

Im Rahmen des Standards ZBMS kann die Art der Überwachung aus technischer Sicht frei gewählt werden:

- kontinuierliche Überwachung mit Eurobalisen und Euroloops
- punktuelle Überwachung mit Magneten oder Eurobalisen.

Innerhalb einer Strecke kann zwischen beiden Überwachungsarten mehrmals gewechselt werden.

Bestimmend für die Festlegung der erforderlichen Überwachung sind die Bestimmungen der AB-EBV, AB 39.3.c. Abgeleitet aus diesen Bestimmungen wird durch die Infrastrukturbetreiberin eine Risikoanalyse sämtlicher potentieller Gefahrpunkte erstellt. Sie dient als Grundlage zur Erstellung eines Einsatzkonzeptes der Zugbeeinflussung. Im Einsatzkonzept wird festgehalten, wo eine kontinuierliche Überwachung erforderlich ist.

Konzeptbeispiele:

- kontinuierliche Überwachung im Bahnhofsbereich und punktförmige Überwachung auf der Strecke
- doppelte Ausrüstung der Streckenpunkte mit Magneten und Eurobalisen für die Dauer der Migration bis alle Triebfahrzeuge und Steuerwagen umgebaut sind
- kontinuierliche Überwachung aller Strecken und Bahnhöfe
- punktuelle Überwachung ergänzt mit Geschwindigkeitsüberwachung an Orten mit grossem Gefährdungspotential, zum Beispiel:
 - punktuelle Geschwindigkeitsprüfungen
 - kontinuierliche Überwachung der Bremskurve vor bestimmten Signalen
 - kontinuierliche Geschwindigkeitsüberwachung in starken Gefällen als Ergänzung zur Sicherheitssteuerung
 - kontinuierliche Geschwindigkeitsüberwachung in ausgewählten Kurvenabschnitten.

6.2 Wechsel der Überwachungsart

6.2.1 Allgemeines

In diesem Dokument werden die allgemeinen Grundsätze zur Umschaltung dargestellt. Detaillierte Umschaltbedingungen sind den jeweiligen Herstellerdokumenten zu entnehmen.

Beim Wechsel der Überwachungsart sind Minimalabstände zwischen den Streckenpunkten beider Systeme zu beachten. Diese Abstände sind durch die Umschaltzeit des Fahrzeugrechners und die Distanz zwischen Magnetempfänger und ETCS-Antenne unter dem Fahrzeug bestimmt.

Die minimale Distanz zwischen Magnet- und Balisengruppen in Fahrtrichtung für die Umschaltung von mit Magneten ausgerüsteten Streckenabschnitten zu Streckenabschnitten mit Eurobalisen beträgt bei einer Streckenmaximalgeschwindigkeit von 90 km/h 50 m. Ein kleinerer Abstand ist bei niedrigerer Geschwindigkeit und engen Verhältnissen möglich. Die Situation muss fallweise betrachtet und beurteilt werden.

Bei Streckenpunkten mit Doppelausrüstung (Magnete und Eurobalisen) muss für die Umschaltung von punktueller Überwachung zu kontinuierlicher Überwachung und umgekehrt eine Fixdaten-Balisengruppe vorgesehen werden.

Innerhalb des Bereiches mit punktueller Überwachung können anstelle von Magneten Eurobalisen verlegt werden. Diese übernehmen die gleichen Funktionen wie die Magnete. Diese Lösung kann zum Beispiel eingesetzt werden,

- wenn die Minimalabstände zwischen Balisen- und Magnetgruppen nicht eingehalten werden können
- als Vorinvestition bei Umbauten, um nicht Magnete nur für eine kurze Zeit einbauen zu müssen.

Bedingung ist, dass sämtliche Fahrzeuge für die Erfassung von Eurobalisen ausgerüstet sind.

6.2.2 Wechsel aus der punktuellen in die kontinuierliche Überwachung

Wenn das Fahrzeuggerät in der punktuellen Überwachung geschaltet ist, werden Magnete und Eurobalisen vom Fahrzeug gelesen und ausgewertet. Das Befahren der ersten Balisengruppe eines Vor- oder Hauptsignals bewirkt den Wechsel in die kontinuierliche Überwachung. Ab diesem Punkt werden die Magnetinformationen gelesen aber nicht mehr vom Fahrzeuggerät ausgewertet.

Die Quittierung einer "Magnet-Warnung" muss abgeschlossen sein, bevor ein Wechsel in die kontinuierliche Überwachung erfolgt. Die maximale Zeit für Quittierung der Warnung ist projektierbar. Sie beträgt in der Regel 5 Sekunden, was zum Beispiel mit 90 km/h eine Distanz von 125 m ergibt. Diese Einschränkung entfällt bei Bahnen, welche die Funktion "Warnung" nicht anwenden.

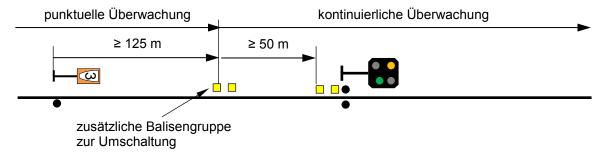


Abbildung 13: Wechsel bei Doppelausrüstung der Strecke

In diesem Beispiel werden die Magnete der bisherigen punktuellen Überwachung im Abschnitt mit kontinuierlicher Überwachung beibehalten. Die Umschaltung kann wegen den Magneten am gleichen Ort nicht mit der Balisengruppe des Vorsignals realisiert werden. Aus diesem Grund muss eine zusätzliche Fixdaten-Balisengruppe zur Umschaltung mindestens 50 m vor dem Vorsignal gesetzt werden. Die Minimaldistanz ab der letzten Magnetgruppe, welche eine Warnung überträgt bis zur ersten Balisengruppe beträgt 125 m bei Quittierung innerhalb von 5 Sekunden und Geschwindigkeit von 90 km/h. Ein typisches Beispiel zu dieser Situation kann mit einer vorübergehenden Langsamfahrstelle entstehen.

Seite 28 01.02.2018

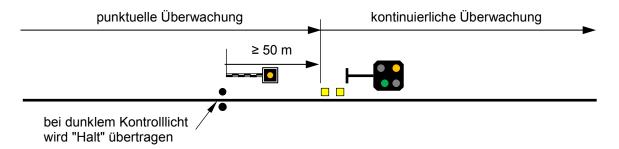


Abbildung 14: Wechsel bei alternierender Ausrüstung der Strecke

Wenn alle Triebfahrzeuge für die kontinuierliche Überwachung ausgerüstet sind, werden die Streckenpunkte entweder mit Eurobalisen oder mit Magneten ausgerüstet. In diesem Fall kann der Wechsel der Überwachung mit der ersten Balisengruppe des kontinuierlich überwachten Abschnitts verwirklicht werden.

6.2.3 Wechsel aus der kontinuierlichen in die punktuelle Überwachung

Der Wechsel durch den Fahrzeugrechner von der kontinuierlichen in die punktuelle Überwachung muss abgeschlossen sein, bevor die nächste Magnetgruppe befahren wird. Dazu ist eine minimale Distanz von 50 m vorzusehen.

In der kontinuierlichen Überwachung werden Magnete erfasst aber nicht ausgewertet. Der Wechsel aus der kontinuierlichen in die punktuelle Überwachung wird im Datentelegramm der entsprechenden Balisengruppe programmiert. Während dem Wechsel dürfen keine Magnetinformationen empfangen werden. Dies muss insbesondere bei doppelter Ausrüstung der Strecke beachtet werden.

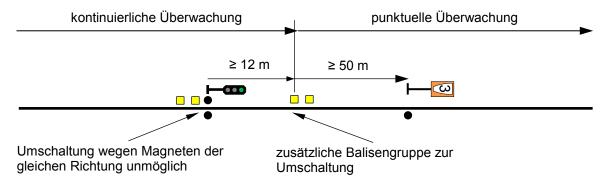


Abbildung 15: Wechsel bei Doppelausrüstung der Strecke

Der Minimalabstand von der letzten befahrenen Magnetgruppe bis zur Balisengruppe für die Umschaltung muss grösser als der Maximalabstand zwischen Magnetempfänger und ETCS-Antenne unter allen Fahrzeugen sein. Da die Antenne bis zu 12.5 m hinter der Fahrzeugfront angeordnet werden darf, ist dieser Abstand jedenfalls kleiner als 12 m.

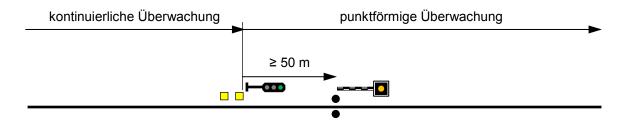


Abbildung 16: Wechsel bei alternierender Ausrüstung der Strecke

Wenn alle Triebfahrzeuge für die kontinuierliche Überwachung ausgerüstet sind, werden die Streckenpunkte entweder mit Eurobalisen oder mit Magneten ausgerüstet. In diesem Fall kann der Wechsel der Überwachung mit der letzten Balisengruppe des kontinuierlich überwachten Abschnitts umgesetzt werden.

6.3 Fahrerlaubnis (MA)

6.3.1 Gültigkeit der Fahrerlaubnis

Bei jedem Datentelegramm, das eine Fahrerlaubnis erteilt, wird die zu fahrende Strecke projektiert. Üblicherweise entspricht die Fahrerlaubnis der Distanz bis zum nächsten Hauptsignal.

Vor dem Ende der Fahrerlaubnis muss die nächste Balisengruppe erfasst werden, welche die Fahrerlaubnis in den folgenden Abschnitt übermittelt. Das Ende der Fahrerlaubnis kann auch durch den spätesten Halteort vor einem *Halt* zeigenden Hauptsignal oder durch einen Prellbock gebildet werden.

Seite 30 01.02.2018

6.3.2 Zielgeschwindigkeit am Ende der Fahrerlaubnis

Die Zielgeschwindigkeit am Ende der Fahrerlaubnis wird wie folgt projektiert:

- 0 km/h, bei einem
 - Warnung zeigenden Vorsignal
 - kurze Fahrt zeigenden Hauptsignal
 - Besetztsignal
 - dunklen Vorsignal
 - Hilfssignal
 - Hauptsignal ohne Vorsignal am gleichen Standort (kombiniertes Signal und Signal, das kurze Fahrt signalisieren kann, sind ausgenommen)
- Die signalisierte H\u00f6chstgeschwindigkeit gegebenenfalls die Anlage-H\u00f6chstgeschwindigkeit bei einem
 - Vorsignal
 - Haupt- und Vorsignal am gleichen Ort
 - kombiniertes Signal
 - für die anderen Fahrbegriffe bei einem Hauptsignal, das kurze Fahrt signalisieren kann
 - Hauptsignal, das einen tieferen Fahrbegriff wegen ungenügendem Bremsweg signalisieren kann.
 Wenn die Vorsignaldistanz kürzer als der Bremsweg für die Höchstgeschwindigkeit ist, muss beim vorausstehenden Zugssignal eine Tiefhaltung projektiert werden. Bei diesem Hauptsignal wird bei den höheren Fahrbegriffen die signalisierte Höchstgeschwindigkeit gegebenenfalls die Anlage-Höchstgeschwindigkeit am Ende der Fahrerlaubnis projektiert.

6.3.3 Vorziehen am Ende der Fahrerlaubnis

Der Zielpunkt der Fahrerlaubnis (MA) liegt beim fahrdienstlichen spätesten Halteort der Fahrstrasse. Um den Auswirkungen der Wegmessung-Toleranzen entgegenzuwirken, darf der Zielpunkt im Durchrutschweg hinter dem spätesten Halteort projektiert werden.

Das Vorziehen am Ende der Fahrerlaubnis mit der Annäherungsgeschwindigkeit wird projektiert wenn:

- am Zielpunkt kein Euroloop installiert ist
- gegen einen Prellbock gefahren wird, damit trotz Wegmessung-Toleranzen überhaupt bis zum Prellbock gefahren werden kann.

6.3.4 Keine Fahrerlaubnis

Im Telegramm wird ein absoluter Halt projektiert bei:

- Halt zeigendem Hauptsignal
- dunklem Hauptsignal.

6.3.5 Mehrere Ziele

Wenn mehrere Fahrwege mit unterschiedlich entfernten Zielen mit dem gleichen Fahrbegriff möglich sind, wird grundsätzlich die kleinste Entfernung im Datentelegramm berücksichtigt. Eine Wegkorrektur zu den weiter entfernten Zielen erfolgt durch Eurobalisen im Fahrweg.

Falls mehrere Fahrstrassen mit dem gleichen Fahrbegriff signalisiert sind, muss eine Fahrwegausscheidung vorgesehen werden:

- Wenn die gleichen Geschwindigkeiten und Geschwindigkeitsschwellen für alle Fahrwege gelten, können alle Fahrwege mit dem gleichen Telegramm abgedeckt werden. Bei unterschiedlich entfernten Zielen genügt eine Wegkorrektur über im Fahrweg verlegte Eurobalisen.
- Wenn unterschiedliche Geschwindigkeiten überwacht werden sollen, muss ein zusätzliches Kriterium verwendet werden. Diese Funktion muss in der Verkabelung berücksichtigt werden, weil sie bis zum ETCS-Streckengerät beim Signal geführt werden muss. Als Kriterium kann zum Beispiel verwendet werden:
 - die Anzeige eines Gleisnummersignals oder Richtungssignals
 - die Fahrtstellung eines bestimmten Zwergsignals
 - die Lage einer Weiche
- Bei elektronischen Stellwerken kann die Fahrwegausscheidung ab Stellwerk über die Datenkommunikation übertragen werden. Dies bedingt eine entsprechend angepasste Stellwerkprojektierung.

6.4 Geschwindigkeitsprofil (SSP)

6.4.1 Überwachte Geschwindigkeiten

Das System lässt Geschwindigkeiten bis 160 km/h zu.

Im Datentelegramm werden Geschwindigkeiten übertragen. Das statische Geschwindigkeitsprofil wird als Statik Speed Profile (SSP) bezeichnet und projektiert. Es umfasst:

- die Höchstgeschwindigkeit bis am Ende der Fahrerlaubnis
- die Zielgeschwindigkeit am Ende der Fahrerlaubnis
- bis zu vier Abschnitte mit verminderter Geschwindigkeit pro Telegramm, die sich überlappen können. Sollten diese vier Abschnitte nicht ausreichen, können mit zusätzlichen Balisengruppen weitere Geschwindigkeitsprofile projektiert werden.

Als verminderte Geschwindigkeit werden undifferenziert alle Arten der Einschränkungen gegenüber der allgemeinen Höchstgeschwindigkeit bezeichnet:

- signalisierte Kurveneinschränkungen, Ein- und Ausfahrgeschwindigkeit eines Bahnhofs gemäss Streckentabellen
- signalisierte Geschwindigkeiten in Abhängigkeit von den Signalbegriffen.

Die verminderten Geschwindigkeiten können auch in den nachfolgenden Streckenabschnitt reichen. Sogar kann deren Anfang im folgenden Abschnitt projektiert werden.

Temporäre Langsamfahrstellen werden in der Regel nicht im Paket 44 sondern mittels ETCS-Paket 65 programmiert.

Im Allgemeinen darf die statisch überwachte Geschwindigkeit nicht restriktiver als die fahrdienstlich erlaubte Geschwindigkeit sein. Dies muss insbesondere bei den Geschwindigkeitsschwellen beachtet werden. Dem Lokführer wird die überwachte Geschwindigkeit nicht angezeigt und er hat keine Möglichkeit sich an eine restriktivere Überwachung anzupassen.

Seite 32 01.02.2018

Soweit möglich wird die Überwachung einer reduzierten Geschwindigkeit auf den sicherheitsrelevanten Bereich begrenzt. Es ist nicht nötig das Einhalten einer fahrdienstlichen Geschwindigkeitsschwelle zu kontrollieren, wenn der tatsächliche Gefahrpunkt weniger restriktiv ist.

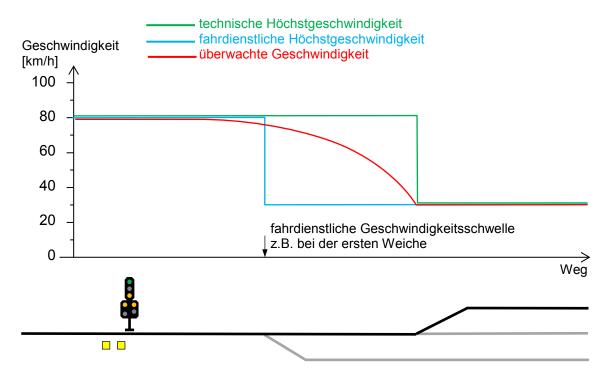


Abbildung 17: Geschwindigkeitsschwelle

Wenn die dynamische Bremskurve der verminderten Geschwindigkeit eines Abschnitts vor dem Anfang dieses Abschnitts ansetzt, muss diese Langsamfahrstelle im vorliegenden Abschnitt projektiert werden. Alternativ kann eine Zielgeschwindigkeit am Ende des Abschnitts projektiert werden, die das Abbremsen vor der nächsten Geschwindigkeitsschwelle gewährleistet.

6.4.2 Überwachung der Zuglänge

Die Zuglänge wird bei einer Geschwindigkeitserhöhung grundsätzlich überwacht.

Keine Überwachung der Zuglänge wird gezielt programmiert:

- bei einer Geschwindigkeitsverminderung wegen Fahrbegriff-Tiefhaltung.
 Wenn ein tieferer Fahrbegriff wegen gleichzeitigen Einfahrten oder kurzem
 Bremsweg im folgenden Abschnitt signalisiert wird, soll der Zug nach dem Nachschalten des Signales sofort beschleunigen können.
- bei der Überwachung einer Bahnübergangsanlage
- am Ende eines Abschnittes mit Fahrt auf Sicht
 - am Ende eines Strassenbahnbereiches, sofern die Geschwindigkeit nicht zusätzlich durch die Gleisgeometrie begrenzt wird
 - im Perronbereich bei nichtschienenfreien Zugängen
 - bei Einfahrt in ein besetztes Gleis. Die Abfahrt des Zugs bei Fahrt zeigendem Ausfahrsignal soll unverhindert erfolgen.
 - bei Anwendung des Hilfssignals. Die Abfahrt des Zugs bei Fahrt zeigendem Ausfahrsignal soll unverhindert erfolgen.

6.4.3 Beispiel

Abbildung 18: Beispiel SSP

Seite 34 01.02.2018

Im aufgezeichneten Abschnitt beträgt die allgemeine Höchstgeschwindigkeit 90 km/h. Die durch die Balisengruppe am Vorsignal erteilte Fahrerlaubnis gilt bis zum Hauptsignal. Die Zielgeschwindigkeit am Ende der MA beträgt 70 km/h. Drei verminderte Geschwindigkeiten sind programmiert:

- die erste verminderte Geschwindigkeit von 80 km/h beginnt sofort und endet im Abschnitt
- die zweite verminderte Geschwindigkeit von 70 km/h beginnt im Abschnitt und endet nach dem Abschnittende
- die dritte verminderte Geschwindigkeit von 30 km/h beginnt nach dem Abschnittende. Sie wird programmiert, damit die dynamische Bremskurve rechtzeitig vor dem Abschnittende anfängt.

Die Balisengruppe beim Hauptsignal erteilt die Fahrerlaubnis in den folgenden Abschnitt mit dem entsprechenden SSP. Diese neuen Daten ersetzen die noch gültigen Daten aus der Balisengruppe des Vorsignals.

6.5 Neigung

Für jeden Streckenabschnitt muss das Neigungsprofil (oder Gradientenprofil) projektiert werden. Das Neigungsprofil muss den Abschnitt bis zum Ende der Fahrerlaubnis voll abdecken.

Falls das Geschwindigkeitsprofil über das Ende der Fahrerlaubnis projektiert wird, muss das Neigungsprofil mindestens bis zum Ende des Geschwindigkeitsprofils verlängert werden. Dies ist für eine korrekte Berechnung der Bremskurven nötig.

Steigungen werden als positive Neigungen erfasst. Gefällen werden als negative Neigungen erfasst. Es können ein bis vier Gradiente pro Balisengruppe und Signalbegriff übertragen werden. Falls das Längenprofil des Streckenabschnittes in mehr als vier Gradiente unterteilt ist, muss ein vereinfachtes äquivalentes Profil berechnet und projektiert werden:

- In Bereichen, wo keine Bremskurve vor einer Geschwindigkeitsschwelle oder vor einem Signal entsteht, hat die im System erfasste Neigung keine Auswirkung. Es darf die in der vorliegenden oder in der darauffolgenden Bremskurve geltende Neigung eingesetzt werden.
- Muss die Neigung in einem Bereich umgerechnet werden, wo eine Bremskurve entsteht, wird der Durchschnitt der Steigung oder des Gefälles in diesem Bereich berechnet. Der Bereich einer Bremskurve entspricht dem Bremsweg oder der Vorsignaldistanz zuzüglich der Länge der längsten Züge.
- Das Neigungsprofil kann je Fahrtrichtung projektiert werden.

Der Fahrzeugrechner berechnet die Bremskurve aufgrund des grössten Gefälles bzw. der kleinsten Steigung. Bei unregelmässigem Längenprofil wird die Zwangsbremskurve entsprechend früher oder später angesetzt. Dies ist insbesondere der Fall, wenn ein kurzes steiles Gefälle in einen allgemein weniger geneigten Bremsweg einbezogen wird. In diesem Fall ist es empfehlenswert eine durchschnittliche Neigung zu berechnen und das Längenprofil entsprechend zu vereinfachen.

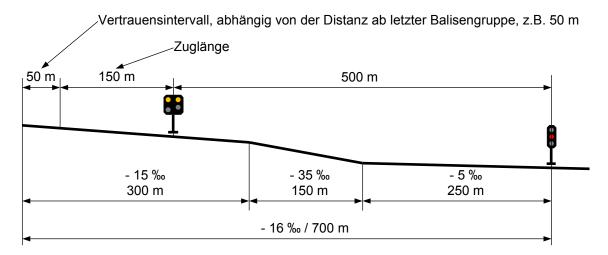


Abbildung 19: Durchschnittliches Gefälle

In diesem Beispiel würde das System die Bremskurve vor dem Signal aufgrund eines Gefälles von 35 ‰ berechnen, wenn alle effektiven Gradienten projektiert werden. Die Bremskurve würde daher früher als erforderlich ansetzen. Eine optimale Bremskurve wird berechnet, wenn mit dem durchschnittlichen Gefälle des Bremswegs projektiert wird.

6.6 Befreiung

6.6.1 Grundsätze

Die Art der Befreiung aus der Bremskurve ist für jeden Zielpunkt einer Fahrerlaubnis zu projektieren. Die Befreiung kann erfolgen mittels:

- Euroloop
- manueller Befreiung
- Vorziehen am Ende der Fahrerlaubnis mit der Annäherungsgeschwindigkeit
- Balisengruppe im Bremsweg.

Die geeignete Art der Befreiung hängt von den örtlichen Verhältnissen und von den betrieblichen Bedingungen ab.

Eine Abfahrtsverhinderung kann nur mit einem Euroloop verwirklicht werden.

Wo ein Euroloop installiert wird, werden Vorziehen am Ende der Fahrerlaubnis und manuelle Befreiung ausgeschlossen.

Seite 36 01.02.2018

6.6.2 Befreiung durch Euroloop

Ein Euroloop ist immer zu projektieren, wo eine Abfahrverhinderung verwirklicht werden soll:

- vor einem Gleissignal
 - allgemein, wenn sich ein betrieblicher Halteort (Perron) vor dem Gleissignal befindet.

Wenn der Durchrutschweg bis zum Gefahrenpunkt für den sicheren Halt ab Freigabegeschwindigkeit genügt, darf von der Sicherheit her eine manuelle Befreiung projektiert werden. Diese Bedingung ist nur in den wenigsten Fällen erfüllt. Häufige Zwangsbremsungen wegen unterbleibender manueller Befreiung durch den Lokführer sind zu erwarten, wenn die manuelle Befreiung nur an wenigen Orten zulässig ist. Es wird empfohlen ein Euroloop zur automatischen Befreiung ohne Bedienung durch den Lokführer einzubauen.

- vor einem Gruppensignal
 - in jedem Gleis bei freier Gleisbenutzung
 - in der Fahrtrichtung entsprechendes Gleis bei vorgeschriebener Gleisbenutzung.

Bei den übrigen Signalen wird die Notwendigkeit von Euroloops aufgrund mehrerer Entscheidungskriterien festgelegt:

- wenn eine manuelle Befreiung zulässig ist, sind betriebliche Kriterien massgebend
 - mit einem Euroloop entsteht kein Fahrzeitverlust wegen Einhalten der Freigabegeschwindigkeit
- wenn die manuelle Befreiung unzulässig ist, wird in der Regel ein Euroloop verbaut. Es kann davon abgewichen werden, wenn die Vorbeifahrt am Signal mittels Vorziehen mit der Annäherungsgeschwindigkeit betrieblich annehmbar ist.

Die maximale Länge eines Euroloops wird aufgrund der untenstehenden Kriterien festgelegt:

- Beim Loopanfang muss bei normalen Sichtverhältnissen (Tag, kein Nebel) das Signal in Sichtweite sein.
- Bei mehrgleisiger Anlage muss zudem die eindeutige Zuordnung des Signals für den Lokführer möglich sein
- Wenn ein Wiederholungssignal oder ein Fahrtstellungsmelder dem Hauptsignal vorausgestellt ist, darf der Loopanfang in der Sichtweite von diesem projektiert werden.
- Die maximale Looplänge beträgt aus rein technischen Gründen 800 m.

Die minimale Länge eines Euroloops wird aufgrund der untenstehenden Kriterien festgelegt:

- Der Loopanfang muss vor dem üblichen Halteort der kürzeren Züge liegen, damit die Abfahrtsverhinderung wirksam ist.
- Der Loopanfang muss vor dem Halteort kürzerer Dienstzüge liegen, wenn der Zielpunkt der Bremskurve nach dem Gefahrpunkt projektiert wird. Je nach Situation muss der Loopanfang deutlich vor dem Perronanfang liegen.

Die optimale Länge eines Euroloops darf unter Einhaltung der minimalen Länge sowie der maximalen Länge aufgrund der untenstehenden Kriterien festgelegt:

- Wenn keine Züge durchfahren, wird die minimale Länge projektiert.
- Für durchfahrende Züge wird die optimale Looplänge von der Geschwindigkeit bestimmt. Wenn das Hauptsignal vor dem sich nähernden Zug von Halt auf freie Fahrt schaltet, soll der Lokführer nicht weiter bremsen müssen.

Durch das Looptelegramm wird die Zielgeschwindigkeit am Ende des Abschnittes aufgehoben und durch die ab Hauptsignal für den folgenden Abschnitt geltende Geschwindigkeit ersetzt. Allfällige tiefere Überwachungen des statischen Geschwindigkeitsprofils bleiben aktiv.

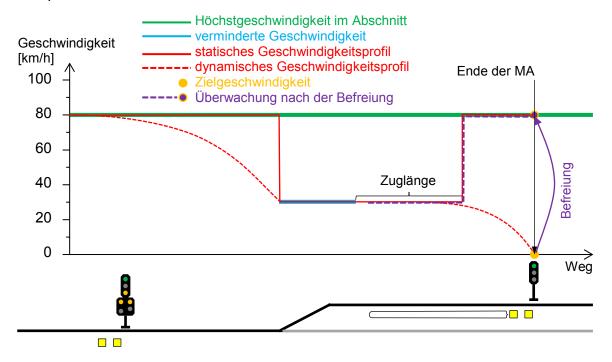


Abbildung 20: Befreiung durch ein Euroloop

Im dargestellten Beispiel wird beim Wechsel von *Halt* auf *freie Fahrt* die Zielgeschwindigkeit von 0 auf 80 km/h angepasst. Die Überwachung auf 30 km/h über die Weiche bleibt aktiv, bis der Zugschluss sie befahren hat.

Die Höchstgeschwindigkeit bei fehlendem Loopempfang ist auf 10 km/h zu projektieren.

6.6.3 Manuelle Befreiung

Die manuelle Befreiung wird dort erlaubt, wo kein Euroloop eingebaut ist. Bedingung zur manuellen Befreiung ist ein genügend grosser Durchrutschweg bis zum Gefahrpunkt. Als Gefahrpunkte gelten insbesondere:

- das Profilzeichen einer Weiche
- eine Weichenspitze
- eine Bahnübergangsanlage
- der Standort des Schlusses eines vorausfahrenden Zuges bei einem Regelhalt,
 z.B. Perronanfang.

Seite 38 01.02.2018

Der Bremsweg von der Einleitung der Zwangsbremsung bis zum Gefahrpunkt muss für das Anhalten aus der Freigabegeschwindigkeit mit den gängigen Bremsreihen genügen. Eine Ausnahme ist unter Analyse der tatsächlichen örtlichen Risiken möglich und ist im Plangenehmigungsverfahren zu deklarieren.

Bei einer Weichenspitze ist das Risiko zu bewerten, ob nach einem allfälligen Überfahren des Hauptsignals der Zug tatsächlich in eine umlaufende Weiche fahren könnte.

Wenn diese Bedingung nicht erfüllt ist, ist entweder ein Euroloop zu installieren oder die Vorbeifahrt am Zielpunkt darf nur mit Vorziehen mit der Annäherungsgeschwindigkeit erfolgen.

Die Distanz vor dem Signal, ab welcher die manuelle Befreiung erlaubt wird, ist bei jedem Signal festzulegen. Die manuelle Befreiung darf erst erlaubt werden, wenn bei normalen Sichtverhältnissen (Tag, kein Nebel) das Signal in der Sichtweite ist. Bei mehrgleisiger Anlage muss zudem die eindeutige Zuordnung des Signals für den Lokführer möglich sein.

Vom System her kann die manuelle Befreiung bereits ab Vorsignal erlaubt werden. Eine Einschränkung besteht dann, wenn ab einem Vorsignal mit einem identischen Fahrbegriff Fahrstrassen mit unterschiedlichen Zielen eingestellt werden können. In diesem Fall kann die manuelle Befreiung erst freigegeben werden, wenn das Ziel zugeordnet ist.

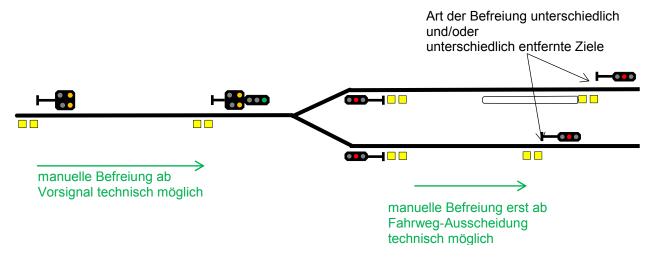


Abbildung 21: Projektierung der manuellen Befreiung

Die Freigabegeschwindigkeit soll auf dem ganzen Netz einheitlich festgelegt werden. Kriterien dazu sind:

- Höchstwert 40 km/h
- die Freigabegeschwindigkeit soll in der Regel den Halt bei Überfahrt eines Einfahrsignals vor der Einfahrweiche ermöglichen
- Es ist oft vernünftig, die bei signalisiertem Fahrbegriff 2 geltende Geschwindigkeit zu übernehmen.

6.6.4 Vorziehen am Ende der Fahrerlaubnis

Die maximale Annäherungsgeschwindigkeit beim Vorziehen am Ende der Fahrerlaubnis soll auf 10 km/h projektiert werden. Die Überhöhungskurven sind bei der Annäherungsgeschwindigkeit reduziert. Das heisst, bereits mit dem Erreichen der Annäherungsgeschwindigkeit wird eine Warnung ausgegeben.

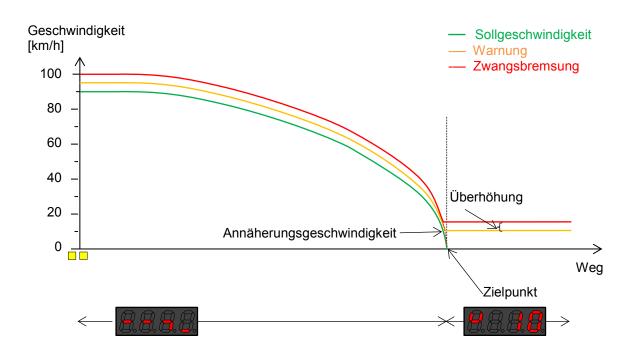


Abbildung 22: Vorziehen am Ende der Fahrerlaubnis

Vorziehen am Ende der Fahrerlaubnis wird projektiert bei:

- einem Hauptsignal, wo die manuelle Befreiung projektiert ist
- einem Hauptsignal, wo weder die manuelle Befreiung erlaubt noch ein Euroloop installiert ist
- Einfahrt in ein Kopfgleis, damit trotz Toleranzen der Odometrie überhaupt bis zum Prellbock gefahren werden kann.

Vorziehen am Ende der Fahrerlaubnis und ein Euroloop am gleichen Zielpunkt sind nicht erlaubt.

6.6.5 Befreiung mittels Eurobalise im Bremsweg

Eine Balisengruppe im Bremsweg ermöglicht eine Befreiung auf die Geschwindigkeit des folgenden Abschnittes wie bei einem Euroloop. Eine Infill-Balisengruppe ist mit allen Befreiungsmöglichkeiten kombinierbar, macht jedoch nur Sinn, wenn kein Euroloop verbaut ist.

Seite 40 01.02.2018

Typische Anwendungsfälle:

- automatische Befreiung bei einem Wiederholungssignal, manuelle Befreiung in der Annäherung vom Hauptsignal
- automatische Befreiung an einem bestimmten Punkt in der Annäherung zum Hauptsignal sowie manuelle Befreiung, wenn das Signal erst nach dem Befahren der Balisengruppe auf Fahrt gestellt wird
- automatische Befreiung an einem bestimmten Punkt in der Annäherung zum Hauptsignal sowie Vorziehen mit der Annäherungsgeschwindigkeit am Ende der Fahrerlaubnis, wenn das Signal erst nach dem Befahren der Balisengruppe auf Fahrt gestellt wird
- automatische Befreiung nach einer Haltestelle zwischen Vor- und Hauptsignal, wenn die Ansteuerung für haltende Züge systematisch nach der Vorbeifahrt am Vorsignal erfolgt
- wenn die manuelle Befreiung nicht zugelassen werden kann.

6.7 Loop-Ankündigung

6.7.1 Loop-Ankündigung

Nur ein angekündigter Euroloop wird durch die Fahrzeugausrüstung ausgewertet. Die Loopankündigung umfasst den Loopschlüssel und die entsprechende Fahrtrichtung. Bei der Vergabe der Loopschlüssel ist zu beachten, dass zwei Euroloops mit dem gleichen Schlüssel keinesfalls gleichzeitig empfangen werden können. In Bahnhofgleisen werden die Euroloops beider Fahrtrichtungen angekündigt. Auf der Strecke werden in der Regel nur die Euroloops der eigenen Fahrtrichtung angekündigt, weil ein Fahrtrichtungswechsel von signalmässigen Fahrten nicht möglich ist.

Die Loopankündigung wird im Datentelegramm der letzten vor dem Euroloop befahrenen Balisengruppe übertragen.

Mit der Information zur Art der Befreiung wird für die eigene Fahrtrichtung auch die Auflösedistanz übermittelt. Diese entspricht der Distanz bis zum Punkt, ab welchem die Befreiung ermöglicht wird.

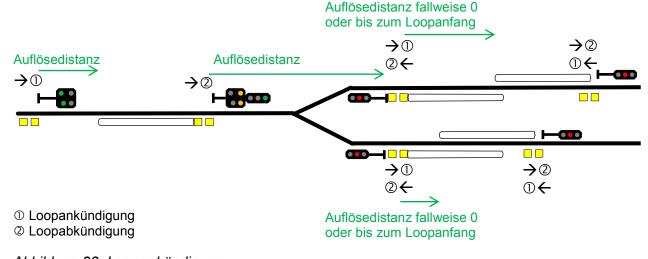


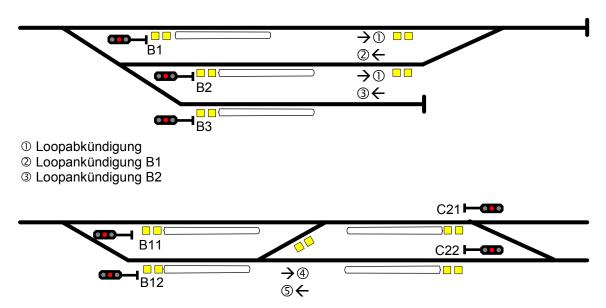
Abbildung 23: Loopankündigung

Die Projektierung mit der Auflösedistanz 0 ist vorteilhaft, wenn ein Euroloop nachträglich verlängert wird. Diese Ergänzung kann ohne Eingriff in die Projektierung der Streckenpunkte umgesetzt werden. Hingegen, wenn ein Zug vor dem Loop-Anfang anhält, wird seine Weiterfahrt bis zum Loop-Anfang wie bei einer Störung des Euroloops auf 10 km/h begrenzt.

Die Projektierung mit Auflösedistanz 0 soll angewendet werden, wenn der Zielpunkt über den Gefahrpunkt projektiert wird. Falls ein Zug vor dem Loop-Anfang anhält und bei *Halt* zeigendem Signal unzulässiger Weise weiterfährt, wird seine Geschwindigkeit vorerst auf 10 km/h begrenzt. Anschliessend, wenn das Loop-Telegramm empfangen wird, wird eine Zwangsbremsung unverzüglich eingeleitet. Das Überfahren des Gefahrpunkts wird somit ausgeschlossen.

6.7.2 Loop- Abkündigung

Beim Befahren der Balisengruppe des Hauptsignals am Ende des Euroloops wird die Abkündigung aller Euroloops im Datentelegramm projektiert.


Wird ein neuer Euroloop angekündigt, werden bisherige, noch angekündigte Euroloops, unverzüglich von der Software im Fahrzeugrechner abgekündigt.

6.7.3 Weichenverbindungen ohne Hauptsignale

Wenn eine Verbindung zwischen zwei Hauptgleisen besteht, muss beachtet werden, dass die Loopabkündigung sowie die Loopankündigung beim Befahren der Gleisverbindungen entsprechend richtiggestellt wird. Falls keine Balisengruppen zu Hauptsignalen im benutzten Fahrweg befahren werden, müssen zusätzliche Balisengruppen zu diesem Zweck installiert werden. Typischerweise trifft diese Situation zu:

- in einem Kopfbahnhof, wenn ein Gleiswechsel Seite Streckenende möglich ist
- wenn zwei Hauptgleise mit einem Spurwechsel unterteilt sind.

Seite 42 01.02.2018

- 4 Loopankündigung C21
- © Loopankündigung B12

Abbildung 24: Weichenverbindungen ohne Hauptsignale

Diese zusätzlichen Balisengruppen werden aus zwei Fixdatenbalisen gebildet. Diese Situation muss auch beachtet werden, wenn die betroffenen Gleisverbindungen nur als Rangierbewegung befahren werden können.

6.8 Höchstgeschwindigkeiten in Personalverantwortung

6.8.1 Reduzierte Geschwindigkeit

Die reduzierte Geschwindigkeit gilt immer, wenn der Fahrzeugrechner über keine Streckendaten verfügt und keinen Loopkey hat:

- nach dem Besetzen des Führerstandes und Bestätigen der Zugdaten
- nach dem Verlassen des Rangiermodus.

Die reduzierte Geschwindigkeit entspricht der Betriebsart "Staff Responsible (SR)" nach ETCS. Sie soll restriktiv auf 10 km/h gesetzt werden.

6.8.2 Fahrt ohne Streckendaten

Die Bedingungen zur Anwendung der Funktion "Fahrt ohne Streckendaten" sind als Ausführungsbestimmung zu den Fahrdienstvorschriften durch die Infrastrukturbetreiberin festzulegen. Sie wird grundsätzlich angewendet bei:

- Rangierbewegung auf die Strecke
- Rangierbewegung in gesperrte Streckengleise
- Weiterfahrt nach der Vorbeifahrt an einem Halt zeigenden Ausfahr- oder Blocksignal
- Weiterfahrt nach einer Zwangsbremsung auf der Strecke
- Weiterfahrt nach dem Aufrüsten der Fahrzeugausrüstung oder dem Neubesetzen des Führerstands auf der Strecke
- Weiterfahrt nach einer Rückwärtsfahrt auf der Strecke.

Geschwindigkeit Fahrzeug-Höchstgeschwindigkeit [km/h] Anlagegeschwindigkeit - überwachte Geschwindigkeit 100 80 60 40 20 0 Wea Rangiermodus aktiviert Weiterfahrt in Vollüberwachung

Die "Fahrt ohne Streckendaten" darf nach der Vorbeifahrt an einem Einfahr- oder Gleisabschnittsignal nicht angewendet werden.

Abbildung 25: Fahrt ohne Streckendaten

Bei Anwendung der Funktion "Fahrt ohne Streckendaten" wird die Fahrzeughöchstgeschwindigkeit bis zur nächsten Balisengruppe überwacht. "Halt" übertragende Magnetgruppen werden auch ausgewertet.

"Fahrt ohne Streckendaten" aktiviert

6.9 Rangieren

Der Rangiermodus wird für Rangierbewegungen im Bahnhof angewendet. Die Höchstgeschwindigkeit im Rangiermodus ist identisch mit der Höchstgeschwindigkeit für Rangierbewegungen im Bahnhof gemäss Fahrdienstvorschriften bzw. Ausführungsbestimmungen zu den FDV zu projektieren.

Die Parameter der Geschwindigkeit beim Aktivieren des Rangiermodus sowie der Geschwindigkeit beim Verlassen des Rangiermodus sind auch festzulegen. Dabei ist zu beachten, dass nach dem Verlassen des Rangiermodus zwingend zur reduzierten Geschwindigkeit gewechselt wird. Auch über einen Euroloop erfolgt der Wechsel zuerst in die reduzierte Überwachung ehe die Aufwertung durch den Euroloop erfolgt. In den Fahrdienstvorschriften ist beim Wechsel von Zug auf Rangierbewegung ein Halt vorgeschrieben. Aus diesen Gründen soll die Geschwindigkeit beim Aktivieren wie beim Verlassen des Rangiermodus einheitlich auf 10 km/h festgelegt werden.

Seite 44 01.02.2018

Die Vorbeifahrt im Rangiermodus kann bei jedem Telegramm einer Balisengruppe und Signalbegriff erlaubt werden. Ist das Manöver nicht erlaubt, wird unmittelbar nach der Überfahrt im Rangiermodus eine Zwangsbremsung eingeleitet.

Die Vorbeifahrt im Rangiermodus wird erlaubt bei:

- Ausfahr-, Gleisabschnitt- oder Blocksignal:
 - für alle Halt-, Stör- und Default-Telegramme
- Einfahrsignal:
 - für alle Halt-, Stör- und Default-Telegramme
 - für Fahrbegriffe sofern die Zustimmung zur Einfahrt gemäss Ausführungsbestimmungen zu den Fahrdienstvorschriften mit der Fahrtstellung des Einfahrsignals erteilt werden darf
- Deckungssignal:
 - für alle Halt-, Stör- und Default-Telegramme
 - für Fahrbegriffe sofern das Signal von der Schaltung her für eine Rangierbewegung freie Fahrt zeigen kann. Dies trifft bei einer Bahnübergangsanlage nach manueller Ansteuerung in der Regel zu.
- Kontrolllicht zu einer Bahnübergangsanlage
 - für alle Telegramme
- Vor- oder Wiederholungssignal
 - für alle Telegramme.

Die Vorbeifahrt an einem *Halt* zeigenden Signal kann nur im Rangiermodus erfolgen. Falls bei der Abfahrt als Zug der Rangiermodus noch aktiviert ist, wird eine Zwangsbremsung bei der Vorbeifahrt am *Fahrt* zeigenden Ausfahrsignal eingeleitet.

6.10 Linking

Ziel des Linkings ist vor allem, dass eine fehlende oder schadhafte Balisengruppe bemerkt wird. Ein Fehler der Odometrie wird ebenfalls durch das Linking offenbart. Sonst könnten solche Störungen unter Umständen unbemerkt bleiben.

Innerhalb eines Bereiches mit kontinuierlicher Überwachung werden die Eurobalisen in der Regel verlinkt. Auf die Verlinkung soll nicht verzichtet werden:

- zwischen Vor- und Hauptsignal
- zwischen Hauptsignalen innerhalb eines Bahnhofs
- das Linking ist zwingend, wenn im Abschnitt ein Euroloop angekündigt wird.

Schleudern verfälscht die Wegmessung. Dies trifft insbesondere auf längeren Steigungsstrecken zu. Aus diesem Grund sind Massnahmen auf Abschnitten notwendig, wo häufig und länger geschleudert wird durch:

- zusätzliche Eichbalisen
- Erhöhung des Vertrauensintervalls
- Unterbrechung des Linkings (nur auf der Strecke).

Ein erhöhtes Vertrauensintervall führt dazu, dass die Bremskurve vor einer Geschwindigkeitsschwelle sowie vor dem Ende der Fahrerlaubnis bei genauer Wegmessung frühzeitig eingeleitet wird.

6.11 Vertrauensintervall / Erwartungsfenster

Der durch das Fahrzeug befahrene Weg wird durch die Odometrie gemessen. Ungenauigkeiten entstehen durch die Radabnützung sowie durch schleudern und gleiten. Die Verlegegenauigkeit der Eurobalisen hängt von der Vermessung bei der Projektierung ab. Aus diesen Gründen kann der befahrene Weg vom effektiven Abstand zwischen zwei Balisengruppen abweichen.

Beispiel im Idealfall:

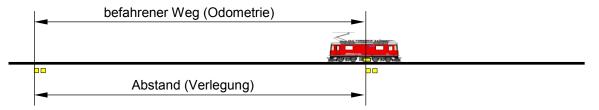


Abbildung 26: Vergleich Odometrie - Vermessung

Das Vertrauensintervall wird aufgrund der annehmbaren Toleranz der Odometrie gerechnet. Das System berechnet das Vertrauensintervall laufend näherungsweise wie folgt:

- grundsätzlich 5 m + 2% des befahrenen Wegs seit der letzten Balisengruppe
- die Konstante kann fallweise auf einen h\u00f6heren Wert festgelegt werden, Maximum
 63 m + 2\u00d7 des befahrenen Wegs
- die Toleranz wird im Fahrzeugrechner automatisch vergrössert, wenn ein Schleudern oder Gleiten detektiert wird.

Nach einer Eichbalise wird das Vertrauensintervall bewusst auf die effektive Verlegegenauigkeit der Balisengruppe zurückgesetzt:

- 1 m + 2% des befahrenen Wegs seit der Eichbalise
- der Minimalwert 1 m für die Verlegegenauigkeit wird bei den Eichbalisen angewendet, die zum Beispiel im Zielgleis innerhalb des Bahnhofs verlegt sind.

Die Ungenauigkeit der Odometrie kann zu einer Verlängerung oder zu einer Verkürzung des gemessenen Wegs gegenüber dem effektiven Abstand zwischen zwei Balisengruppen führen (± Toleranz). Das Erwartungsfenster entspricht daher der doppelten Länge des Vertrauensintervalls.

Seite 46 01.02.2018

Beispiel Balisengruppe innerhalb Erwartungsfenster erfasst:

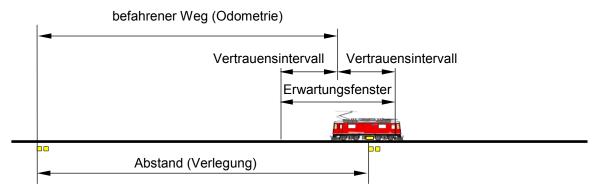


Abbildung 27: Balisengruppe im Erwartungsfenster erfasst

Eine Balisengruppe wird nur ausgewertet, wenn sie innerhalb des Erwartungsfensters empfangen wird.

Beispiel Balisengruppe ausserhalb Erwartungsfenster erfasst:

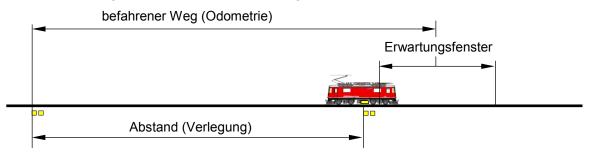


Abbildung 28: Balisengruppe ausserhalb Erwartungsfenster

Wenn keine Eurobalise innerhalb des Erwartungsfensters empfangen wird, wird ein Fehler ausgegeben. Die Systemreaktion wird unterschiedlich projektiert:

- Bei einer Balisengruppe, die nur der Wegmessungskorrektur dient, wird nur eine Störungsmeldung angezeigt.
- B.ei einer Balisengruppe an einem Vorsignal wird eine Störungsmeldung abgesetzt. Das Ende der Fahrerlaubnis bleibt unverändert. So wird ein Halt vor dem darauffolgenden Hauptsignal erzwungen.
- Bei einer Balisengruppe an einem Hauptsignal wird eine Zwangsbremsung eingeleitet.

Wenn eine Balisengruppe ausserhalb des Erwartungsfensters erfasst wird, wird sie nicht ausgewertet. Das Vertrauensintervall wird nicht zurückgesetzt. Dadurch fehlen dem Fahrzeug die nötigen Informationen für den Folgeabschnitt und das System reagiert mit der entsprechenden Systemreaktion.

6.12 Zielpunkt der Fahrerlaubnis

6.12.1 Berechnung des Zielpunktes

Die Genauigkeit der im Fahrzeugrechner errechneten Bremskurve wird von der Genauigkeit der Odometrie bestimmt. Um den sicheren Halt vor dem projektierten Zielpunkt immer zu gewährleisten, wird die Bremskurve auf den weitesten Punkt des Vertrauensintervalls ausgelegt, das heisst auf die maximal angenommene Position der Fahrzeugspitze. Demzufolge liegt der effektive Zielpunkt der Bremskurve immer innerhalb des Vertrauensintervalls vor dem projektierten Zielpunkt.

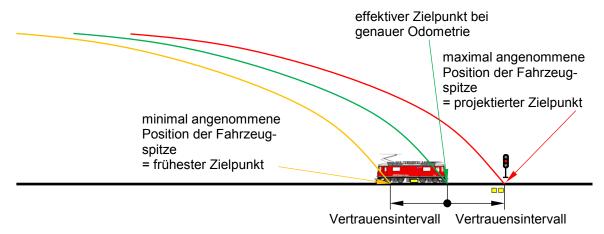


Abbildung 29: Zielpunkt-Berechnung

Im Normalfall wird der Zielpunkt beim spätesten Halteort der Fahrstrasse projektiert (Hauptsignal, Weichenprofil bei einem Gruppensignal). Eine Projektierung über den spätesten Halteort wird nur angestrebt, wenn dieser Punkt aus betrieblichen Gründen genau angefahren werden muss. Dies trifft zum Beispiel öfters bei einem Ausfahrsignal zu.

6.12.2 Ausnutzung des Durchrutschweges

Wenn nötig kann die Projektierung so ausgelegt werden, dass der Zug möglichst ungehindert bis zum fahrdienstlichen spätesten Halteort fahren kann. Dies kann nur unter Ausnützung eines vorhandenen Durchrutschweges erfolgen, sofern Vorziehen am Ende der Fahrerlaubnis nicht erlaubt ist.

Der Zielpunkt darf über den fahrdienstlichen spätesten Halteort in den Durchrutschweg so weit verschoben werden, dass die maximal angenommene Position der Fahrzeugspitze vor dem Gefahrenpunkt liegt. So wird gewährleistet, dass der Zug immer bis zum spätesten Halteort fahren kann.

Seite 48 01.02.2018

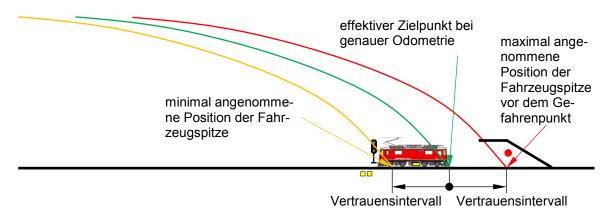


Abbildung 30: Zielpunkt im Durchrutschweg

Der Zielpunkt muss spätestens vor dem Gefahrenpunkt projektiert werden. Als Gefahrenpunkte gelten insbesondere:

- das Profilzeichen einer Weiche
- eine Weichenspitze
- eine Bahnübergangsanlage
- der Standort des Schlusses eines vorausfahrenden Zug bei einem Regelhalt, z.B. Perronanfang.

Jede verlinkte Balisengruppe setzt das Vertrauensintervall zurück. Reicht der vorhandene Durchrutschweg nicht aus, kann eine zusätzliche Eichbalise 30 m vor dem spätesten Halteort verlegt werden. Mit dieser Massnahme wird das Vertrauensintervall minimiert. Als Eichbalise genügt eine einzeln verlegte Fixdatenbalise.

Wenn der Durchrutschweg nicht ausreicht, muss der Halteort angepasst oder der Zielpunkt hinter den Gefahrenpunkt projektiert werden.

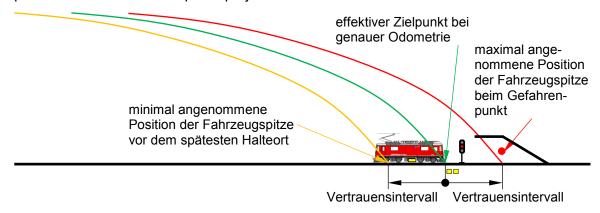


Abbildung 31: Durchrutschweg nicht ausreichend

6.12.3 Zielpunkt nach dem Gefahrenpunkt

Reicht der Durchrutschweg nicht, darf in gewissen Situationen der Zielpunkt hinter den Gefahrenpunkt projektiert werden. Die typische Anwendung liegt bei Ausfahrsignalen. Dazu sind alle untenstehenden Bedingungen zu erfüllen:

- Der Gefahrenpunkt ist das Profilzeichen einer Weiche.
- Gleichzeitige Einfahrten sind ausgeschlossen.
- Die Zeitverzögerung bis zum Einstellen einer zweiten Fahrstrasse muss ausreichen bis zum sicheren Halt des erst eingefahrenen Zuges. Die Zeitverzögerung ist nach R RTE 25054 ausgelegt.
- Der Fahrdienstleiter darf diese Zeitverzögerung nur umgehen, nachdem er den Stillstand des Zuges festgestellt hat.
- Eine Abfahrtverhinderung mittels Euroloop ist zwingend. Diese Abfahrtverhinderung muss auch für kurz haltende Dienstzüge wirken. Daher muss unter Umständen der Loopanfang deutlich vor dem Perronanfang projektiert werden.

Diese Situation muss im Plangenehmigungsverfahren deklariert werden.

Die Aufstellung einer Eichbalise 30 m vor dem Zielpunkt soll der Projektierung hinter dem Gefahrenpunkt vorgezogen werden.

6.12.4 Prellbock am Zielpunkt

In einem Kopfgleis muss sichergestellt werden, dass der Zug überhaupt bis zum Prellbock fahren kann. Das Vertrauensintervall bestimmt den effektiven Zielpunkt der Bremskurve vor dem Prellbock. Die Aufstellung von Eichbalisen vor dem Prellbock wird empfohlen, um diese Auswirkungen zu vermindern. Wenn die letzte Balisengruppe 150 m vor dem Zielpunkt liegt, liegt der früheste überwachte Zielpunkt 16 m vor dem Prellbock. Eine Eichbalise 30 m vor dem Prellbock ermöglicht diese Distanz auf ca. 3.5 m zu reduzieren. Eine Balisengruppe zur Repositionierung kann auch weiter weg vom Prellbock projektiert werden, um diese in der Gegenrichtung bei der Abfahrt von einem zuvor abgestellten Fahrzeug ausnutzen zu können. Das Vertrauensintervall wird aber dadurch nicht so stark reduziert.

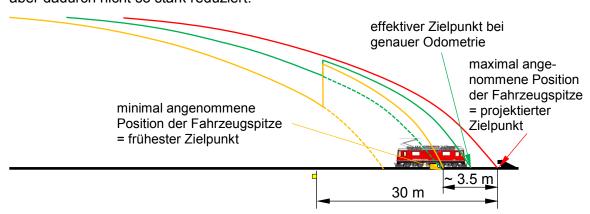


Abbildung 32: Eichbalise vor dem Prellbock

In der Regel wird Vorziehen am Ende der Fahrerlaubnis projektiert, um die Anfahrt am Prellbock zu ermöglichen.

Seite 50 01.02.2018

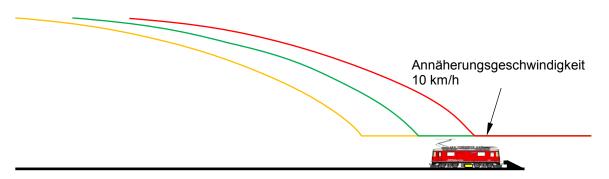


Abbildung 33: Annäherungsgeschwindigkeit vor dem Prellbock

Vorziehen mit der Annäherungsgeschwindigkeit auch auf einer bescheidenen Länge von ca. 20 m vor dem Prellbock verzögert den Halt des Zugs. Dieser Zeitverlust kann als unverhältnismässig betrachtet werden.

Eine zügige Anfahrt an den Prellbock wird ermöglicht, wenn der Zielpunkt hinter den Prellbock projektiert wird. Ein Anprall wird aber durch das System nicht mehr ausgeschlossen. Aus diesem Grund wird die Projektierung hinter dem Gefahrpunkt nur in Kombination mit einer Eichbalise empfohlen.

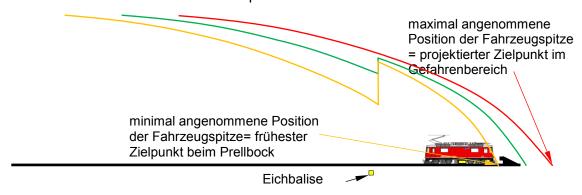


Abbildung 34: Zielpunkt hinter dem Prellbock

Ein hinter dem Prellbock projektierter Zielpunkt muss im Plangenehmigungsverfahren deklariert werden. Die unterschiedlichen Projektierungsmöglichkeiten können kombiniert werden, um ein Optimum zu erreichen.

6.12.5 Anpassung der Signalisierung

Wenn bei einem Ausfahr- oder Gleisabschnittsignal der berechnete früheste Zielpunkt vor dem spätesten Halteort liegt, soll dieser Standort signalisiert werden. Damit kann der Lokführer Zwangsbremsungen in der Annäherung zum Signal vermeiden.

Grundsätzlich kann diese Situation durch Realisierung eines genügenden Durchrutschwegs vermieden werden:

- Bei einem Gleissignal kann das Signal versetzt werden, damit ein ausreichender Durchrutschweg geschaffen wird.
- Im Falle eines Gruppensignals mit Zusatzsignalisierung mittels Zwergsignalen ist die Versetzung der Zwergsignale ebenfalls möglich.
- Bei einem Gruppensignal mit Zusatzsignalisierung mittels Gleisnummersignal liegt der späteste Halteort vor dem Profilzeichen der Ausfahrweiche. Ein Durchrutschweg kann nur mittels tiefgreifender Änderung der Sicherungsanlage (z.B. Umbau auf Gruppensignal-Halteorttafeln mit Fahrstellungsmeldern) geschaffen werden.
- Bei einem Gruppensignal mit Zusatzsignalisierung mittels Gruppensignal-Halttafel wird diese Tafel in jedem Gleis an den frühesten Zielpunkt versetzt. Die Balisengruppen werden beim neuen Standort der Gruppensignal-Halttafel angeordnet.

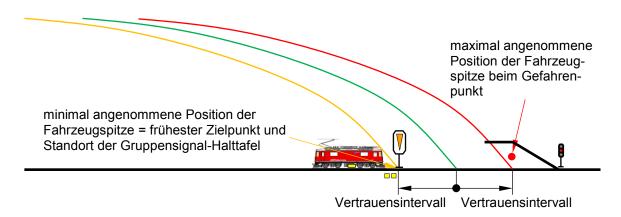


Abbildung 35: Aufstellung der Gruppensignal-Halttafel

Der erforderliche Durchrutschweg kann mit der Aufstellung einer Eichbalise 30 m vor der Balisengruppe des spätesten Halteorts minimiert werden.

Wenn zulässig und notwendig soll dazu der Zielpunkt über den Gefahrpunkt projektiert werden.

Wenn die Versetzung von Signalen unverhältnismässig ist, darf eine für diesen Zweck gestaltete Merktafel am berechneten frühesten Zielpunkt aufgestellt werden, sofern:

- es sich um eine bestehende Sicherungsanlage handelt
- das Vorziehen am Zielpunkt nicht projektiert werden kann (z.B. wegen einem Euroloop)
- die Aufstellung einer Eichbalise nicht ausreichen würde, um den frühesten Zielpunkt beim spätesten Halteort zu projektieren
- der Zielpunkt nicht über den Gefahrenpunkt projektiert werden darf (z.B. wegen gleichzeitigen Einfahrten).

Abbildung 36: Merktafel zum Zielpunkt einer Bremskurve

Bei engen Platzverhältnissen kann die Tafel senkrecht angeordnet werden.

Die Aufstellung von Merktafeln muss im Plangenehmigungsverfahren deklariert werden. Die Infrastrukturbetreiberin muss die Anwendung der Merktafel in ihren Ausfüh-

Seite 52 01.02.2018

rungsbestimmungen zu den Fahrdienstvorschriften festlegen. Im Rahmen des jeweiligen Verfahrens ist dem BAV für die von den Grundvorschriften abweichende Signalisierung mittels "Merktafel zum Zielpunkt einer Bremskurve" ein Ausnahmegesuch einzureichen.

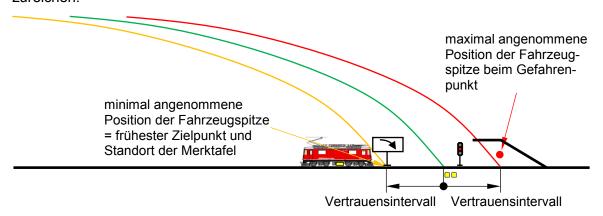


Abbildung 37: Aufstellung der Merktafel zum Zielpunkt einer Bremskurve

Es wird keine doppelte Signalisierung durch hintereinanderstellen der Merktafel und Gruppensignalhalttafel verwirklicht.

6.12.6 Auswirkung des Vertrauensintervalls auf das Geschwindigkeitsprofil

Das Vertrauensintervall beeinflusst jede Bremskurve vor einer Geschwindigkeitsschwelle, weil sie auf die maximal angenommene Position der Fahrzeugspitze berechnet wird. Bei einer Geschwindigkeitserhöhung mit Zuglängenüberwachung ist die minimal angenommene Position des Zugschlusses massgebend. Da die überwachte Geschwindigkeit nicht angezeigt wird, kann der Lokführer nicht wissen, welche Überwachung gilt. Der Lokführer muss die fahrdienstlich vorgeschriebenen Geschwindigkeitsschwellen einhalten.

Bei Einhaltung der Vorschriften soll keine Systemreaktion ausgelöst werden. Aus diesem Grund ist eine Optimierung unvermeidlich.

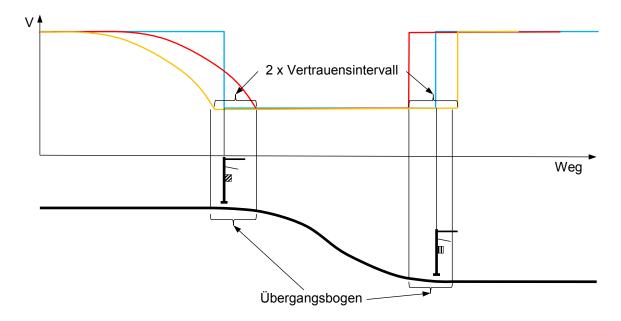


Abbildung 38: Projektierung von Geschwindigkeitseinschränkungen

Die Geschwindigkeitsschwelle wird in den Gleisdaten grundsätzlich beim Anfang des Übergangsbogens festgelegt.

Die Kurvensignale werden in der Regel an Fahrleitungsmasten befestigt. Meistens steht ein Fahrleitungsmast im Übergangsbogen. Der nächste Fahrleitungsmast, Seite höhere Geschwindigkeit, ist öfters 60 m entfernt. Aus diesem Grund werden meistens die Kurvensignale pragmatisch im Übergangsbogen aufgestellt.

Sicherheitsrelevant ist, dass die tiefere Geschwindigkeit spätestens beim Bogenanfang erreicht wird.

Es ist empfehlenswert die Geschwindigkeitsschwelle am Bogenanfang / -ende zu projektieren und die Auswirkung des Vertrauensintervalls zu prüfen. Die tatsächliche Bremskurve soll nicht oder nur unwesentlich restriktiver als die Signalisierung wirken. Es ist zu beachten, dass das Vertrauensintervall zwischen Anfang und Ende einer Geschwindigkeitseinschränkung sich verändert.

Wenn die Geschwindigkeitsschwelle bei einer Weichenspitze projektiert wird, ist es möglich diese bei der Projektierung bis zur doppelten Länge des Vertrauensintervalls in Richtung Herzstück zu verschieben. Damit wird eine Bremsung genau auf die Weichenspitze ermöglicht. Bedingung dazu ist, dass die Weichenspitze unter Kumulierung der Toleranzen nicht mit einer gefährlichen überhöhten Geschwindigkeit befahren werden kann.

Mit der höchsten Verzögerung aller angewandten Bremsmodelle darf bei der maximal angenommenen Position der Fahrzeugspitze eine Überschreitung der Höchstgeschwindigkeit von höchstens 25 % bei der Weichenspitze toleriert werden.

Die tolerierbare Verschiebung der Geschwindigkeitsschwelle kann wie folgt berechnet werden:

$$s = \frac{(v \times 1.25/3.6)^2 - (v/3.6)^2}{2 \times a}$$

- s tolerierbare Verschiebung der Geschwindigkeitsschwelle [m]
- a maximale Verzögerung [m/s²]
- v Höchstgeschwindigkeit im Weichenbereich [km/h]

Seite 54 01.02.2018

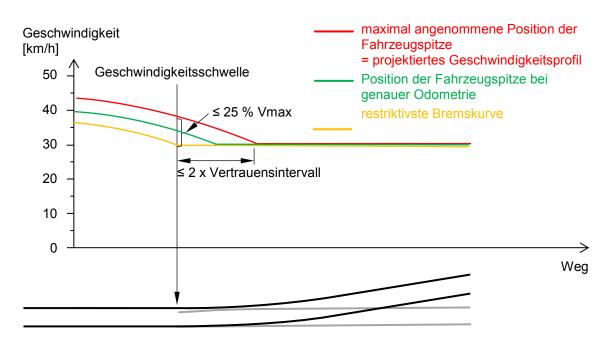


Abbildung 39: Projektierung bei einer Weichenspitze

Die maximal angenommene Position der Fahrzeugspitze entspricht der permissivsten Bremskurve. Die restriktivste Bremskurve entsteht, wenn zum Beispiel der effektive Raddurchmesser deutlich kleiner als der im System eingestellte Wert ist. Bei genauer Odometrie wird die Bremskurve mittig zwischen beiden dargestellten Kurven verlaufen.

6.13 Durchrutschwege

6.13.1 Vom System benötigte Durchrutschwege

Es ist immer ein minimaler Durchrutschweg erforderlich, damit der Halt am fahrdienstlich spätesten Halteort ungehindert möglich ist. Voraussetzung ist, dass das Ziel der Fahrerlaubnis spätestens beim Gefahrenpunkt projektiert wird. Diese Bedingungen werden in Abhängigkeit mit der befahrenen Distanz ab letzter Balisengruppe erfüllt:

- ohne Eichbalise
 Durchrutschweg = Distanz ab letzter Balisengruppe 0.04 + 12.6 m
- mit Eichbalise
 Durchrutschweg = Distanz ab Eichbalisengruppe 0.04 + 4.6 m.

Der vom System benötigte Durchrutschweg wird durch die Summierung der:

- wegabhängigen Toleranz der Odometrie
- Verlegegenauigkeit der Balisengruppe
- minimalen überwachten Geschwindigkeit am spätesten Halteort von 3-4 km/h je nach Bremsmodell

berechnet.

Dieser minimale Durchrutschweg ist auch erforderlich, wenn keine gleichzeitigen Fahrten möglich sind. Damit wird ermöglicht, dass unter Einbezug des Vertrauensintervalls bis zum spätesten Halteort gefahren werden kann, ohne hinter dem Gefahrenpunkt projektieren zu müssen.

6.13.2 Planung der Durchrutschwege

Durch kontinuierliche Überwachung wird gewährleistet, dass der Zug am Ende von einer Zugfahrstrasse immer vor dem projektierten Zielpunkt zum Stillstand kommt. Sofern der projektierte Zielpunkt vor dem Gefahrenpunkt liegt, kommt das Fahrzeug vor dem Gefahrenpunkt zum Stehen. Somit dürfen gemäss der AB-EBV, AB 39.3.a, Ziffer 4.3.3 kürzere als die in der Ziff. 4.3.2 festgelegten Mindestdurchrutschwege projektiert werden. Diese sind auf Grund einer Sicherheitsbeurteilung festzulegen.

Verkürzte Durchrutschwege dürfen nur projektiert werden, wenn:

- alle eingesetzten Fahrzeuge für die kontinuierliche Überwachung ausgerüstet sind.
 Die Migration der Fahrzeuge muss abgeschlossen sein.
- ein Euroloop vor dem Zielsignal zwecks Abfahrtverhinderung installiert ist.

6.14 Fahrbegriff-Tiefhaltung

Beim Nachschalten eines Hauptsignals von einem tieferen auf einen höheren Fahrbegriff, muss die Auswirkung auf die Überwachung eines sich nähernden Zugs geprüft werden. Da die überwachte Geschwindigkeit nicht angezeigt wird, kann der Lokführer nicht wissen, welche Überwachung gilt. Der Lokführer muss die fahrdienstlich vorgeschriebenen Geschwindigkeitsschwellen einhalten. Er hat keine Möglichkeit eine restriktivere systembedingte Überwachung einzuhalten.

Es müssen Massnahmen getroffen werden, damit der Zug nach dem Nachschalten eines Signals nicht behindert wird. Ein Euroloop oder eine zusätzliche Balisengruppe ist eventuell notwendig, um die Änderung der signalisierten Geschwindigkeit auf das Fahrzeug zu übertragen.

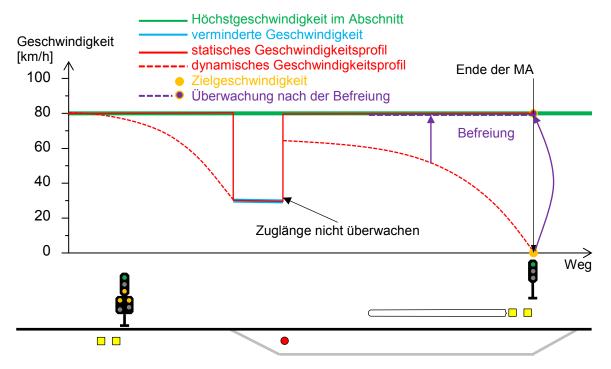


Abbildung 40: Fahrbegriff-Tiefhaltung

Im dargestellten Beispiel wird beim Einfahrsignal Fahrbegriff 2 als Tiefhaltung signalisiert. Der typische Grund dazu kann die Länge des Durchrutschwegs bei gleichzeitigen

Seite 56 01.02.2018

Einfahrten sein. Es wird keine ablenkende Weiche befahren. Im Beispiel liegt die Geschwindigkeitsschwelle bei signalisierter Geschwindigkeit am Einfahrsignal bei der ersten Weiche. Wenn das Ausfahrsignal von *Halt* auf *freie Fahrt* gewechselt hat, darf der Lokführer gemäss schweizerischen Fahrdienstvorschriften wieder beschleunigen wenn:

- er das vollständige Signalbild und seine Zugehörigkeit zum befahrenen Gleis erkannt hat und
- die Zugspitze die letzte Weiche des Abschnittes befahren hat und
- keine tiefere Geschwindigkeit durch ein Zugbeeinflussungssystem überwacht wird.

Aus diesem Grund wird die signalisierte Geschwindigkeit ab Spitze der Einfahrweiche auf einem kurzen Abschnitt bis zum Profilzeichen der Weiche überwacht. So wird die Einhaltung der signalisierten Geschwindigkeit überwacht. Das Ende der reduzierten Geschwindigkeit wird ohne Überwachung der Zugslänge vor dem Anfang des Euroloops erreicht.

6.15 Massnahmen bei knapper Vorsignaldistanz

Die Fahrerlaubnis wird allgemein bis zum nächsten Hauptsignal erteilt. Die bei einem Hauptsignal erteilte Fahrerlaubnis endet mit einer Bremskurve vor dem folgenden Hauptsignal. Beim Vorsignal werden diese Daten durch eine neue, dem Fahrbegriff entsprechende Fahrerlaubnis ersetzt.

Wenn die Vorsignaldistanz zu knapp ist, wird die Bremskurve am Ende der Fahrerlaubnis bereits vor dem Vorsignal eingeleitet. Auch bei theoretisch ausreichender Vorsignaldistanz kann diese unerwünschte Auswirkung bei grossem Vertrauensintervall eintreffen. Die Bremskurve wird vor dem Ende der Fahrerlaubnis um die Länge des Vertrauensintervalls vorverschoben. Auch wenn je nach Situation die Einsatzkurve der Zwangsbremsung nicht erreicht wird, kann aber trotzdem die Warnkurve überschritten werden.

Mögliche Massnahmen sind:

- die Streckengeschwindigkeit zu reduzieren
 Wenn nur einzelne Bremsmodelle betroffen sind, kann die Geschwindigkeit der entsprechenden Zug- und Bremsreihe vermindert werden.
- eine zusätzliche Balisengruppe dem Vorsignal vorausgesetzt zu verlegen
 Sie muss in der Sichtweite des Vorsignals und nach dem Punkt liegen, wo der Zug sich befindet, wenn die Fahrstrasse in der Regel eingestellt wird.
- ein langer Euroloop vor dem Hauptsignal so zu verlegen, dass der Loopanfang sich in der Sichtweite des Vorsignals befindet Die Balisengruppe beim Vorsignal entfällt.

Es ist nicht ratsam die Balisengruppe des Vorsignals vorzuverlegen, weil ein Fahrbegriff-Wechsel unmittelbar vor der Vorbeifahrt am Vorsignal, nach dem Befahren der Balisengruppe, nicht übertragen werden kann.

6.16 Fehlendes Vorsignal

Wenn eine Merktafel für fehlendes Vorsignal zum Einfahrsignal aufgestellt ist, soll eine Balisengruppe bei dieser Merktafel aufgestellt werden. Sie wird an die LEU des Hauptsignals angeschlossen. Deren Projektierung erfolgt wie bei einem echten Vorsignal.

Wenn auch diese Merktafel fehlt, endet die beim letzten Hauptsignal erteilte Fahrerlaubnis vor dem Hauptsignal. Eine Befreiung muss in jedem Fall erfolgen. Sie kann mittels Euroloop, mittels Infill-Balisengruppe oder manuell projektiert werden. Wichtig ist bei längeren Signalabständen auch eine Eichbalise in der Annäherung zum Hauptsignal vorzusehen, um den Vertrauensintervall zu reduzieren.

6.17 Besetzte Einfahrt

Eine besetzte Einfahrt wird wie ein normaler Fahrbegriff projektiert:

- die parametrisierte Geschwindigkeit entspricht der h\u00f6chsten Geschwindigkeit nach Fahrdienstvorschriften
- das Ziel wird beim spätesten Halteort festgelegt.

Zur Fahrwegausscheidung wird grundsätzlich der kürzeste Fahrweg projektiert. Die Entfernung wird bei der Balisengruppe des Signals der Gegenrichtung je nach Zielgleis korrigiert.

Bei der Projektierung muss wie bei einer Fahrbegriff-Tiefhaltung geachtet werden, dass die Weiterfahrt nach dem Halt nicht wegen Überwachungen im Zusammenhang mit der besetzten Einfahrt verhindert wird. Der Lokführer kann eine solche Überwachung nicht erkennen und daher nicht einhalten. Diese Situation trifft zum Beispiel zu, wenn zwei Züge hintereinander in einem Gleis aufgestellt werden.

Dazu soll das Geschwindigkeitsprofil auf zwei Aspekten getrennt betrachtet und projektiert werden:

- Die durch den Fahrweg bedingten Höchstgeschwindigkeiten und Geschwindigkeitsschwellen sind vollumfänglich zu projektieren. Bei einer Erhöhung der Geschwindigkeit ist die Zuglänge zu überwachen.
- Die mit der Einfahrt ins besetzte Gleis bedingte Geschwindigkeitseinschränkung ist nur bis zum Anfang des Euroloops im Zielgleis ohne Zuglänge zu projektieren. So wird die Weiterfahrt aufgrund des Fahrbegriffs am nächsten Signal uneingeschränkt möglich.

Seite 58 01.02.2018

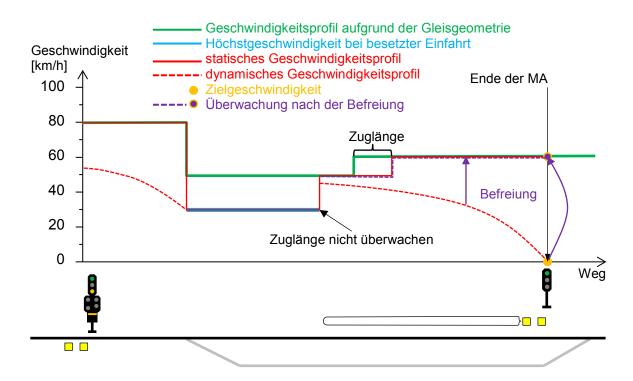


Abbildung 41: Besetzte Einfahrt

Im Beispiel liegt die Geschwindigkeitsschwelle bei signalisierter Geschwindigkeit am Einfahrsignal bei der ersten Weiche. Die Überwachung der Geschwindigkeit wird wie üblich aufgrund der Höchstgeschwindigkeit im befahrenen Fahrweg mit Überwachung der Zuglänge projektiert. Zusätzlich dazu wird die Höchstgeschwindigkeit bei besetzter Einfahrt ab Geschwindigkeitsschwelle überwacht, bis die Zugspitze den Anfang des Euroloops erreicht.

6.18 Einfahrt in einen Bahnhof ohne schienenfreie Zugänge

Eine Geschwindigkeitseinschränkung bei Einfahrt in ein dem Bahnhofgebäude näher liegendes Gleis wird nur projektiert, wenn diese signalisiert wird:

- mittels Signal f
 ür Einfahrt in einen Bahnhof ohne schienenfreie Zug
 änge (R 300.2, Ziffer 5.3.2) oder
- mittels Fahrbegriff 6, falls eine Ausführungsbestimmung der Infrastrukturbetreiberin zu den Fahrdienstvorschriften die Einfahrt in ein dem Bahnhofgebäude näher liegendes Gleis mit dem Fahrbegriff 6 anordnet.

Überwacht wird die Höchstgeschwindigkeit 20 km/h:

- ab Anfang des Perrons
- ab Sicherheitszeichen der in das Gleis führenden Weiche, wenn kein Perron vorhanden ist
- bis zur Bahnhofsmitte, ohne Zuglänge-Überwachung. Damit wird die Abfahrt nach einem Halt nicht behindert.

Diese Geschwindigkeitseinschränkung wird nicht überwacht, wenn sie nur über ein Zeichen in der Streckentabelle oder in der Fahrordnung bestimmter Züge angeordnet wird.

6.19 Rückfall-Fahrbegriffe

Bei Ausfall einer einzelnen Signallampe wird je nach Stellwerktyp ein restriktiverer Rückfall-Fahrbegriff signalisiert. Allfällige Rückfall-Fahrbegriffe müssen in der Projektierung berücksichtigt werden. Wird ein Fahrbegriff signalisiert, für welchen kein Datentelegramm projektiert ist, löst die LEU das Stör-Telegramm aus. Zwei typische Situationen sind zu unterscheiden:

- Eine andere Fahrstrasse wird mit dem gleichen Fahrbegriff wie der Rückfall-Fahrbegriff signalisiert. In diesem Fall ist zu prüfen, dass die Projektierung auch für die mit dem Rückfall-Fahrbegriff signalisierte Fahrstrasse richtig ist.
- Die entsprechenden Signalbilder werden ausschliesslich beim Rückfall-Fahrbegriff angewendet. In diesem Fall ist eine entsprechende Projektierung vorzunehmen.

Bei Rückfall-Fahrbegriffen darf permissiv projektiert werden. Die Zielgeschwindigkeit, ausser wenn *Warnung* signalisiert wird, sowie das statische Geschwindigkeitsprofil dürfen wie beim normalen Fahrbegriff projektiert werden.

6.20 Gestörte Bahnübergangsanlage

Bei einer gestörten Bahnübergangsanlage wird das Befahren mit der Zugspitze im Schritttempo überwacht.

Projektiert wird dazu:

- Zielgeschwindigkeit 10 km/h 5 m vor dem Anfang des Bahnübergangs
- Überwachung auf 10 km/h bis Mitte Übergang
- anschliessend gilt wieder die Anlage-Höchstgeschwindigkeit bzw. die signalisierte Geschwindigkeit
- keine Überwachung der Zuglänge.

Wenn mehrere Bahnübergangsanlagen durch ein Hauptsignal oder Kontrolllicht gesichert sind, wird für jeden Bahnübergang eine separate Bremskurve hinterlegt.

Seite 60 01.02.2018

6.21 Hilfssignal

6.21.1 Hilfssignal am Einfahrsignal

Das Hilfssignal wird wie ein normaler Fahrbegriff projektiert. Die Gefahrenpunkte, welche überwacht werden können, werden soweit möglich gesichert:

- Vom Einfahrsignal bis zur ersten Weiche ist die Höchstgeschwindigkeit bei Fahrt auf Sicht zu überwachen, in der Regel 40 km/h.
- Ab erster Weiche ist die bei Fahrbegriff 2 signalisierte Geschwindigkeit zu überwachen, wenn die Geschwindigkeitsschwelle sich bei der ersten Weiche befindet.
- Örtliche tiefere Geschwindigkeiten sind zu berücksichtigen.
- Gegebenenfalls ist eine zusätzliche Geschwindigkeitseinschränkung bei besetzter Einfahrt zu berücksichtigen.
- Das Ziel wird auf das kürzeste Fahrziel gelegt. Die Entfernung wird bei der Balisengruppe des Signals der Gegenrichtung je nach Zielgleis korrigiert.
- Die reduzierte Geschwindigkeit wird bis zum Anfang des Euroloops vor den Ausfahrsignalen, ohne Zuglänge-Überwachung, überwacht. Damit wird die Abfahrt nach Befreiung durch das Euroloop nach Fahrbegriff erfolgen. Sie wird nicht durch die bei der Einfahrt mit Hilfssignal überwachte Geschwindigkeit verhindert.
- In einer Anlage ohne Zwergsignale werden die Bahnübergangsanlagen als gestört betrachtet und entsprechend überwacht.
- In einer Anlage mit Zwergsignalen werden die Bahnübergänge nicht überwacht, weil das letzte Zwergsignal vor dem Übergang dem Lokführer eine gültige Information über den Zustand liefert. Dasselbe gilt, wenn der Zustand der Bahnüberganganlage mittels Kontrolllicht oder Sperrsignal signalisiert wird.
- Die Erfassung von Zustandskriterien der Bahnübergangsanlagen nur um die Überwachung beim Hilfssignal zu optimieren, wäre unverhältnismässig. Das Hilfssignal wird nur bei Störungen angewendet. Zudem gilt in diesen seltenen Anwendungsfällen Fahrt auf Sicht.

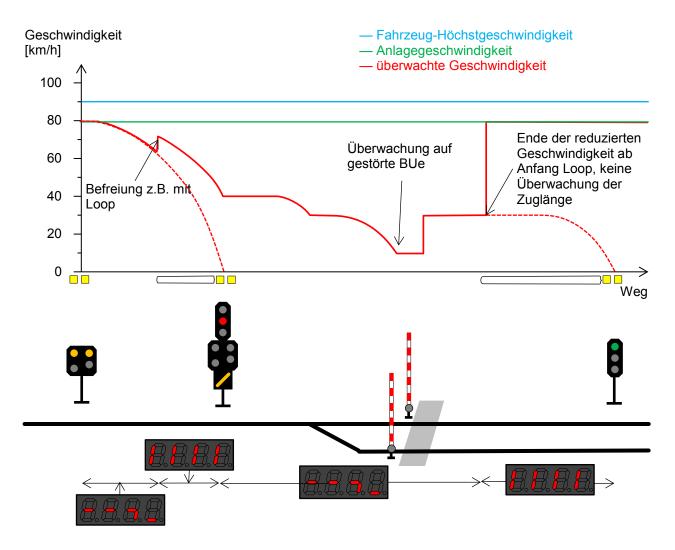


Abbildung 42: Hilfssignal

Mit dieser Projektierung muss der Lokführer keine zusätzliche Bedienung aufgrund der Zugbeeinflussung vornehmen.

6.21.2 Hilfssignal am Ausfahrsignal

Das Hilfssignal am Ausfahrsignal wird wie ein normaler Fahrbegriff projektiert. Die Gefahrenpunkte, die überwacht werden können, werden soweit möglich gesichert:

- Im Weichenbereich wird die bei Fahrbegriff 2 signalisierte Geschwindigkeit überwacht.
- In Anlagen ohne Zwergsignale werden die Bahnübergangsanlagen als gestört betrachtet und entsprechend überwacht.
- In Anlagen mit Zwergsignalen werden die Bahnübergänge nicht überwacht, weil das letzte Zwergsignal vor dem Übergang dem Lokführer eine gültige Information über den Zustand liefert. Dasselbe gilt, wenn der Zustand der Bahnübergangsanlage mittels Kontrolllicht oder Sperrsignal signalisiert wird.
- Nach der letzten Weiche wird die Streckengeschwindigkeit wie bei Fahrt zeigendem Ausfahrsignal überwacht.
- Das Ziel der Fahrerlaubnis wird auf das n\u00e4chste Hauptsignal gesetzt.

Seite 62 01.02.2018

6.21.3 Hilfssignal System L mit Zusatzsignalisierung bei gestörter Bahnübergangsanlage

Das Hilfssignal am Ausfahrsignal wird wie ein normaler Fahrbegriff projektiert. Die Gefahrenpunkte, die überwacht werden können, werden soweit möglich gesichert:

- Im Weichenbereich wird die bei Fahrbegriff 2 signalisierte Geschwindigkeit überwacht.
- Die Bahnübergangsanlagen werden als gestört betrachtet und entsprechend überwacht.
- Nach der letzten Weiche wird die Streckengeschwindigkeit wie bei Fahrt zeigendem Ausfahrsignal überwacht.
- Das Ziel der Fahrerlaubnis wird auf dem n\u00e4chsten Hauptsignal gesetzt.

6.22 Strassenbahnbereich

Im Strassenbahnbereich werden die Hauptsignale und die Streckengeschwindigkeit überwacht. Tramsignale ohne Abhängigkeit mit dem Stellwerk werden nicht überwacht. Kurvengeschwindigkeiten können in der Regel nicht überwacht werden.

Bei der Überwachung müssen die Auswirkungen des Vertrauensintervalls und des Schleuderns besonders beachtet werden. Im Strassenbahnbereich werden die Geschwindigkeitsschwellen und die Halteorte tendenziell sehr genau angefahren. Zudem verschlechtert das Streusalz die Adhäsionsverhältnisse massiv.

6.23 Vorübergehende Langsamfahrstellen

Wenn vorübergehend signalisierte Langsamfahrstellen überwacht werden sollen, können sie punktuell oder kontinuierlich überwacht werden. Dazu werden nicht verlinkte Wurfbalisen für die Dauer der Langsamfahrstelle installiert. Im Normalfall wird in jeder Fahrtrichtung eine Fixdaten-Balisengruppe auf Höhe des Vorsignals zur Langsamfahrstelle verlegt:

- Eine punktförmige Überwachung wird mit einer im Paket 44 parametrierten "Warnung" verwirklicht. Der Lokführer muss diese Warnung am Anzeigegerät oder wenn vorhanden mittels externer Taste quittieren. Für den Fahrzeug-Parameter der maximalen Quittierzeit durch den Lokführer soll 5 s gewählt werden.
- Eine kontinuierliche Überwachung wird mit dem ETCS-Datenpaket 65 verwirklicht.
 Die überwachte Geschwindigkeit kann in 5 km/h-Schritte programmiert werden.
 Die maximale Überwachungslänge im Paket 65 beträgt 1360 m. Um die Überwachung auf einer längeren Distanz zu verwirklichen, muss eine zweite Balisengruppe vor dem Ende der Überwachung verlegt werden.
- Bei kontinuierlicher Überwachung ist gegebenenfalls eine Balisengruppe auf Höhe jedes Aufhebungssignals zu verlegen. Die Aufhebung der Langsamfahrstelle wird mittels ETCS-Paket 66 übermittelt.
- Bbeide Überwachungsarten können kumuliert verwirklicht werden.

Die punktuelle Überwachung wird allgemein verwendet, wenn eine Langsamfahrstelle kurzfristig signalisiert wird. Dazu können vorprogrammierte Balisengruppen zusammen mit den Langsamfahrsignalen in den Aussenstellen gelagert werden. Gehandhabt werden sie wie die bisherigen Baustellenmagnete.

Die kontinuierliche Überwachung muss von Fall zu Fall projektiert werden. Der Prozess dazu und die Anwendungskriterien sind durch die Infrastrukturbetreiberin festzulegen.

6.24 Punktförmige Überwachung mit Eurobalisen

In einem Bereich mit punktueller Überwachung können eine am Anzeigegerät oder mittels externer Taste zu quittierende "Warnung" sowie "Halt" und "Fahrt" mittels Eurobalisen übertragen werden. Zum Schutz von Bahnübergangsanlagen oder anstelle von Magneten können punktuelle Überwachungen realisiert werden. Der Projektierungsaufwand ist entsprechend einfacher als bei einer kontinuierlichen Überwachung.

So kann eine punktuelle Überwachung auch verwirklicht werden, wenn die Fahrzeuge nicht (oder nicht mehr) mit Magnetempfängern ausgerüstet sind. Bei gemischter Ausrüstung der Strecke, kann diese Lösung angewendet werden, wenn die Platzverhältnisse einen Wechsel der Überwachungsart nicht zulassen.

6.25 Abgestellte Fahrzeuge

In Bahnhöfen, wo Fahrzeuge regelmässig abgestellt werden, ist deren Wiederinbetriebnahme, z.B. nach dem Nachtstilllager, konzeptionell zu betrachten.

Nach dem Aufrüsten erfolgt die Fahrt bis zum Befahren der ersten Balisengruppe zwingend in der reduzierten Überwachung. Eine Abfahrtverhinderung ist nur bei einem zuvor angekündigten Euroloop wirksam.

Unterschiedliche Situationen sind auf der Grafik dargestellt:

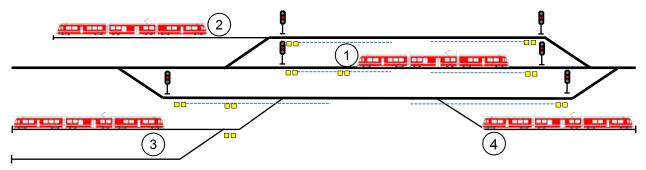


Abbildung 43: Abstellsituationen

- ① Das Fahrzeug wurde im Abfahrgleis abgestellt.
- Wenn das Fahrzeug in der Parkstellung abgestellt wurde, ist die Ankündigung der Euroloops aus der letzten Fahrt immer noch gespeichert. Die Abfahrtsverhinderung ist auch nach einem Nachtstilllager in beiden Fahrtrichtungen wirksam.
- Wenn das Fahrzeug abgerüstet abgestellt wurde, erfolgt die Abfahrt in der Personalverantwortung. Die reduzierte Geschwindigkeit, grundsätzlich 10 km/h, muss bis zum Befahren der ersten Balisengruppe eingehalten werden:
 - In der Fahrtrichtung nach rechts muss mit der reduzierten Geschwindigkeit bis zum Gleissignal gefahren werden.
 - In der Fahrtrichtung nach links erfolgt der Wechsel von der reduzierten Geschwindigkeit in die Vollüberwachung bereits beim Befahren der zusätzlichen Balisengruppe vor dem Gleissignal. Diese Balisengruppe muss eine am Gleissignal angeschlossene Transparentdatenbalise enthalten.
- ② Die Fahrt aus dem Abstellgleis erfolgt im Rangiermodus. Beim Befahren der Balisengruppe des Gleissignals der Gegenrichtung werden die Loops beider Fahrtrichtungen angekündigt. Die Abfahrtsverhinderung wird in beiden Fahrtrichtungen damit aktiviert. Bei der Abfahrt wird der Zug auf die signalisierte Geschwindigkeit überwacht.

Seite 64 01.02.2018

- ③ Die Fahrt aus dem Abstellgleis erfolgt im Rangiermodus. Eine Fixdatenbalise ist im Fahrweg aufgestellt. Sie dient der Ankündigung der Euroloops beider Fahrtrichtungen. Die Abfahrtsverhinderung wird in beiden Fahrtrichtungen damit aktiviert. Bei der Abfahrt wird der Zug auf die signalisierte Geschwindigkeit überwacht.
- ④ Die Fahrt aus dem Abstellgleis erfolgt im Rangiermodus. Bis zum Abfahrgleis wird keine Balisengruppe befahren. Die Abfahrt des Zugs erfolgt in der Personalverantwortung. Die reduzierte Geschwindigkeit, grundsätzlich 10 km/h, muss bis zum Befahren der ersten Balisengruppe eingehalten werden:
 - In der Fahrtrichtung nach rechts muss mit der reduzierten Geschwindigkeit bis zum Gleissignal gefahren werden.
 - In der Fahrtrichtung nach links erfolgt der Wechsel der reduzierten Geschwindigkeit in die Vollüberwachung bereits beim Befahren der zusätzlichen Balisengruppe vor dem Gleissignal. Diese Balisengruppe muss eine am Gleissignal angeschlossene Transparentdatenbalise enthalten.

Vom System her können alle aufgeführten Möglichkeiten verwirklicht werden.

Ein Konzept muss durch den Projektleiter unter Berücksichtigung der Sicherheitsaspekte und der betrieblichen Anforderungen erstellt werden. Sämtliche Anlagen, wo Fahrzeuge regelmässig abgestellt werden, sind einzubeziehen. Dieses Konzept ist mit den Unterlagen zur Plangenehmigung einzureichen.

6.26 Betriebsartumschaltung mittels Balisengruppe

6.26.1 Prinzip

Eine Betriebsartumschaltung wird immer mit einer Fixdaten-Balisengruppe unmittelbar bei der Zahnstangen-Einfahrt sowie -Ausfahrt für jede Richtung verwirklicht.

Eine für die Betriebsartumschaltung eingesetzte Fixdatenbalisengruppe darf nicht zusätzlich einen Wechsel von der punktuellen in die kontinuierliche Überwachung auslösen. Die Balisengruppe eines Zugsignals kann nicht für die Betriebsartumschaltung zusätzlich verwendet werden.

Im Balisentelegramm werden folgende Betriebsartinformationen übermittelt und an den digitalen Ausgängen ausgegeben:

- Betriebsart
 - Adhäsion
 - Zahnstange 1
 - Zahnstange 2
 - Zahnstange 3
- Neigungsrichtung (bergwärts/talwärts).

Die Zahnstangenbereiche 1, 2 und 3 werden in Abhängigkeit mit der Neigung zugeordnet.

6.26.2 Wirkung in der Fahrzeugsteuerung

Bei der Betriebsartumschaltung mit Eurobalisen dient der Fahrzeugrechner der Zugbeeinflussung nur als Übertragungsmedium. Die Betriebsart wird in der Fahrzeugsteuerung überprüft und abgespeichert.

Der Grundzustand Adhäsion / Zahnstange wird aber zurückgelesen und es wird eine Fehlermeldung am Bedien- und Anzeigegerät ausgegeben, wenn die beiden Zustände nach einer projektierbaren Zeit voneinander abweichen.

Bei der Inbetriebnahme des Fahrzeuggerätes wird die aktuelle Betriebsart im System aufgrund des Zustands des digitalen Eingangs zur Rückmeldung der aktiven Betriebsart im Fahrzeug gesetzt.

Ein betriebliches Wenden in der Zahnstange ist im System nicht vorgesehen. Nach dem Wenden erfolgt die Umschaltung der Neigungsrichtung erst nach dem Lesen der ersten Balisengruppe mit entsprechender Paket 44-Information.

6.27 Betriebsartumschaltung mit Magneten

6.27.1 Prinzip

Eine Betriebsartumschaltung wird mit einer Magnetkombination unmittelbar bei der Zahnstangen-Einfahrt sowie -Ausfahrt für jede Richtung verwirklicht.

Folgende Werte können übermittelt werden:

- Betriebsart
 - Adhäsion
 - Zahnstange 1
 - Zahnstange 2
 - Zahnstange 3
- Neigungsrichtung (bergwärts/ talwärts)

Die Zahnstangenbereiche 1, 2 und 3 werden in Abhängigkeit mit der Neigung zugeordnet.

6.27.2 Wirkung in der Fahrzeugsteuerung

Bei der Betriebsartumschaltung mit Magneten erfolgt die Betriebsartüberwachung im Fahrzeugrechner der Zugbeeinflussung. Nach dem Wechsel Adhäsion – Zahnstange und umgekehrt wird überprüft, dass der Lokführer innerhalb einer projektierbaren Zeit die Betriebsartumschaltung durchführt. Andernfalls wird eine Zwangsbremsung eingeleitet Diese kann nur im Stillstand und in der richtigen Betriebsart zurückgestellt werden. Optional kann der Übergang in Zahnstange 2 mit einem separaten Betriebsart-Eingang überprüft werden (MGB Schöllenen). Ansonsten werden die Übergänge innerhalb der Zahnstange automatisch nachgeführt.

Die Zustände "Zahnstange" und "Neigungsrichtung" werden remanent gespeichert. Diese stehen nach dem Aufstarten des Gerätes wieder zur Verfügung.

Beim Wenden innerhalb der Zahnstange wird auch die Neigungsrichtung richtiggestellt.

Wird ein Fahrzeugrechner im Zahnstangenbereich wegen einer Störung ausgeschaltet, bleibt die Betriebsart gespeichert. Mit einem separaten Eingang kann die Betriebsart im Depot wieder auf Adhäsion zurückgesetzt werden.

Seite 66 01.02.2018

6.28 Geschwindigkeitsüberwachung auf Zahnstangenabschnitten

6.28.1 Zahnstangeneinfahrt

Die Projektierung muss so erfolgen, dass eine Zwangsbremsung im Bereich der Zahnstangeneinfahrt möglichst vermieden wird. Die Einfahrt in die Zahnstange mit gebremsten Zahnrädern stellt ein viel höheres Risiko als eine Überschreitung der Einfahrgeschwindigkeit dar.

Die Einfahrgeschwindigkeit wird allgemein nicht überwacht. Projektiert wird 40 km/h.

6.28.2 Bergfahrt

Grundsätzlich kann in der Fahrzeugprojektierung die Höchstgeschwindigkeit selektiv zu jedem der Zahnstangenbereiche 1, 2 oder 3 projektiert werden.

Projektiert wird die maximale Geschwindigkeit bei der Bergfahrt.

6.28.3 Talfahrt

Die Zahnstangenbereiche 1, 2 oder 3 werden aufgrund des Gefälles festgelegt. Zu jedem Bereich wird eine Höchstgeschwindigkeit in der Fahrzeugprojektierung festgelegt. Damit kann ein Fahrzeug wahlweise nach der Höchstgeschwindigkeit der Geschwindigkeitsreihen 1, 2 oder 3 nach AB-EBV, AB 76.1.a, Ziffer 9 dauernd überwacht werden. Die Überwachung kann in Abhängigkeit mit dem Gefälle in drei Geschwindigkeitsstufen projektiert werden.

Eine Überschreitung dieser überwachten Geschwindigkeiten führt unmittelbar zu einer Zwangsbremsung.

Zusätzlich kann ein statisches Geschwindigkeitsprofil (SSP) mit den üblichen Warn-, Betriebsbrems- und Zwangsbremskurven projektiert werden.

Das System ZSI 127 unterscheidet nicht zwischen dem Bremsvermögen im Adhäsions- und im Zahnstangenbereich. Die streckenseitige Projektierung muss so ausgelegt sein, dass die Fahrzeuge im Zahnstangenbereich mit den Bremsmodellen aus dem Adhäsionsbereich arbeiten können. Dazu wird die Neigung talwärts mit 0 ‰ projektiert.

6.29 Default- und Störungs-Telegramme

Wenn das ETCS-Streckengerät einen Fehler detektiert, das heisst ein fehlerhaftes oder nicht projektiertes Signalbild, setzt das Streckengerät ein Störungstelegramm ab. Das Störungstelegramm wird auch durch den Euroloop übermittelt.

Wenn die Transparentdatenbalise kein Signal des ETCS-Streckengerätes empfängt, wird das in der Eurobalise gespeicherte Default-Telegramm abgesetzt.

Default-Telegramme können weder durch Fixdatenbalisen noch durch Euroloops übermittelt werden.

Die Reaktion bei Default- und Störungs-Telegrammen kann unterschiedlich projektiert werden. Grundsätzlich wird das restriktivste Telegramm nach Normalbetrieb gesendet:

- Vorsignal: Fahrerlaubnis bis zum n\u00e4chsten Hauptsignal
- Hauptsignal: Halt
- Kontrolllicht zu einer Bahnübergangsanlage: Telegramm bei dunklem Kontrolllicht.

6.30 Abfahrtverhinderung bei Normalspurzügen

In Drei- oder Vierschienengleisen ist zu beachten, dass die Abfahrtsverhinderung nach dem Wenden oder nach dem Aufrüsten bei Normalspurfahrzeugen unwirksam ist. Jede Loopankündigung entfällt. Bei ETCS L1LS erfolgt die Abfahrt nach dem Aufrüsten oder nach dem Wenden in Personalverantwortung mit Überwachungsgeschwindigkeit 40 km/h bis zur Vorbeifahrt an der ersten Balisengruppe. Beim Euro-ZUB ist die Abfahrt nach dem Aufrüsten oder dem Wenden bis zur Vorbeifahrt an der ersten Balisengruppe nicht überwacht. In der Sicherheitsanalyse ist auf die vergleichsweise tiefere Abdeckung der potentiellen Risiken zu achten.

Seite 68 01.02.2018

7 Systemintegration beim Betreiber

7.1 Voraussetzungen

Zugbeeinflussungsprojekte sind komplexe interdisziplinarische Projekte. Tiefgreifende Auswirkungen in die beteiligten Bereiche erfordern eine enge Vernetzung der Sparten wie:

- Streckenausrüstung, Anschluss an die bestehende Infrastruktur
- Fahrzeugausrüstung, Integration in bestehende sowie neu gebaute Fahrzeuge
- Systembetrieb, betriebliche Abläufe, Auswirkungen im Hintergrund unter Anwendung der fahrdienstlichen Prozesse und Vorschriften.

Der Systembetrieb steht bei der Auslegung des Projektes und bei der Migrationsstrategie im Vordergrund und gilt als die Basis für die konzeptionelle Auslegung des Projekts. Es gilt primär die für die anwendende Bahn spezifischen Sicherheitsanforderungen zu definieren:

- Was ist zu schützen
 Art der Überwachung, auszurüstende Standorte
- Weg dazu
 Migrationsstrategie, Etappierung
- Umsetzbarkeit
 Finanzierung, Projektkapazitäten im Engineering, Verfügbarkeit der Fahrzeuge und Kapazitäten für deren Umbau, Personalausbildung.

Streckenausrüstung und Fahrzeugausrüstung können weitgehend unabhängig voneinander als getrennte Projekte ausgeführt werden. Wesentlich ist aber, dass beide zeitlich zueinander koordiniert geführt werden.

7.2 Projektierung der Streckenausrüstung

7.2.1 Erfassung der örtlichen Daten

Der erste Schritt der infrastrukturseitigen Projektierung durch den Projektleiter der Bahn ist die Erfassung der örtlichen Daten.

Die Standorte sind mit einer Genauigkeit von +/- 1 m zu erfassen:

- Hauptsignale
- Vorsignale
- späteste Halteorte, z.B. Gruppensignal-Halttafeln, Prellbocke
- besondere betriebliche Halteorte
- Weichen, Spitze und Profilzeichen
- Geschwindigkeitsschwellen in Bahnhöfen und auf der Strecke
- Bahnübergangsanlagen
- Korrektursprünge der Kilometrierung (Fehlerprofile).

Zusätzlich sind zu erfassen:

- Neigungen (Genauigkeit +/- 1 ‰) und Neigungswechsel (Standorte der Neigungszeiger)
- Streckengeschwindigkeiten, inklusiv Kurvengeschwindigkeiten
- Bahnhofgeschwindigkeiten.

Zu jedem Vor- und Hauptsignal sind zu erfassen:

- alle Signalbegriffe, inklusiv Ausfallbegriffe
- alle möglichen Fahrstrassen zu jedem Fahrbegriff mit den entsprechenden zu überwachenden Geschwindigkeiten und Zielpunkten
- bei einem Hauptsignal zusätzlich:
 - die Art der Befreiung
 - die Looplänge oder
 - der Bereich zur manuellen Befreiung
 - der Gefahrenpunkt
 - die zu projektierenden Überwachungen bei Besetzt- und Hilfssignal.

Besonders zu achten ist auf allfällige Fahrbegriff-Tiefhaltungen und auf den Ablauf, wenn das Zielsignal in der Annäherung auf einen höheren Fahrbegriff nachschaltet. Speziell in diesem Fall zu beachten ist, wenn die Zuglänge nicht überwacht werden soll. Sämtliche Geschwindigkeitsschwellen gemäss R 300.6, Kapitel 2 sind zu überwachen. Es darf aber keine tiefere Geschwindigkeit als die fahrdienstlich erlaubte Geschwindigkeit überwacht werden, denn die überwachte Geschwindigkeit wird nicht angezeigt: Daher wäre eine solche Einschränkung dem Lokführer nicht bekannt und Zwangsbremsungen die Folge.

Diese Daten bilden für den Hersteller die Grundlage zur Auslegung des Systems. Alle Streckenkomponenten und die erforderliche Infrastruktur (Apparatekasten, Verkabelung usw.) werden vorerst definiert. Die Abgriffe der Signalbilder sowie allfällige Fahrwegausscheidungen werden festgelegt.

7.2.2 Begehung

In einer Begehung werden die erfassten Daten sowie die Einbaumöglichkeiten systematisch geprüft. Insbesondere ist zu beachten:

- die Genauigkeit aller erfassten Standorte
- die Einbaumöglichkeit der vorgesehenen Apparatekasten
- die Kabeltrassen
- die Länge der Euroloops unter Einhaltung der Projektierungskriterien zur Minimallänge und Maximallänge
- die Verlegung der Leckkabel im Schienenfuss, speziell bei Hindernissen wie Weichen, Übergängen sowie eingedecktem Gleis
- bei manueller Befreiung, die Distanz ab welcher das Hauptsignal in der Annäherung sichtbar wird.

Voraussetzung für eine erfolgreiche und effiziente Begehung ist eine genaue und vollständige Vorbereitung. Alle Projektierungsdaten sind soweit möglich im Voraus zu erfassen. Die Begehung soll nur noch der Prüfung der Projektierung und der Festlegung von Detailpunkten dienen.

Seite 70 01.02.2018

7.2.3 Ausführungspläne, Bauunterlagen

Nach der Begehung kann der Systemlieferant die definitiven Ausführungspläne, Bauunterlagen, Anschlussschemas und Unterlagen zum Plangenehmigungsverfahren herstellen.

Diese Unterlagen sind durch den Besteller zu prüfen und freizugeben.

7.2.4 Plangenehmigungsverfahren

Zusätzlich zu den üblichen Unterlagen zur Plangenehmigung sind spezifisch bei einem Zugbeeinflussung-Projekt die untenstehenden Angaben erforderlich:

- für Bahnhöfe, wo Triebfahrzeuge regelmässig abgestellt werden: das Abstellkonzept und die Art der Sicherung bei der ersten Abfahrt nach der Inbetriebnahme (Kapitel 6.27)
- wenn der Zielpunkt hinter den Gefahrenpunkt projektiert wird (Ziffer 6.12.3)
- wenn hinter einen Prellbock projektiert wird (Ziffer 6.12.4)
- die Aufstellung von Merktafeln (Ziffer 6.12.5)
- alle Abweichungen zu diesen Projektierungsgrundlagen mit einer Analyse über die allfälligen Überwachungslücken und die damit verbundenen Risiken.

Abweichungen zu diesen Projektierungsgrundlagen sind im Plangenehmigungsverfahren wie Abweichungen zu den RTE zu gewichten und zu behandeln.

7.3 Montage, Inbetriebsetzung

Die Montage der Streckenausrüstung kann weitgehend ohne Beeinträchtigung der in Betrieb stehenden Anlagen erfolgen. Es ist aber zu beachten:

- Noch nicht in Betrieb gesetzte Eurobalisen müssen mittels Abdeckblech abgeschirmt werden, damit sie die Fahrzeuge nicht beeinflussen. Bei Testfahrten muss darauf geachtet werden, dass kein anderes ausgerüstetes Fahrzeug die Strecke bei nicht abgedeckten Eurobalisen befährt.
- Die Führung der Kabel zu den Signallampen durch das ETCS-Streckengerät muss bei gesperrter Strecke erfolgen. Vor der Wiederinbetriebnahme des Signals ist eine vollständige Signalprüfung vorzunehmen.

Nach dem Laden der Konfigurationsdaten des ETCS-Streckengerätes und der Eurobalisen müssen die Telegramme der Eurobalisen zur Prüfung zurückgelesen werden. Damit wird die Funktion beider Geräte geprüft.

Eine Probefahrt soll vor der Inbetriebnahme mit Befahren sämtlicher Gleise in beiden Richtungen durchgeführt werden. Dabei wird besonders geprüft:

- der Linking aller verknüpften Eurobalisen
- der Empfang der Euroloops.

Es ist dabei nicht nötig, auf besondere Signalstellungen zu achten.

Eine zusätzliche Probefahrt zur Prüfung der Zielpunkte (Ende der Fahrerlaubnis) bei ausgewählten oder bei allen Signalen kann eingeplant werden. Bei dieser Fahrt sind alle zu prüfenden Hauptsignale auf *Halt* zu belassen, bis der Zug angehalten hat. Vom Aufwand her macht es Sinn, diese Probefahrt erst nach der Inbetriebnahme einzuplanen.

7.4 Projektierung der Fahrzeugausrüstung

7.4.1 Konzept

Die erforderlichen Komponenten werden durch die Fahrzeuglänge, die Anordnung der Antenne und die maximale Länge des Antennenkabels bestimmt:

- Einzelfahrzeuge können mit einem Rechner und in der Regel mit einer Antenne ausgerüstet werden.
- Zweiteilige Fahrzeuge k\u00f6nnen meistens mit einem Rechner, aber zwingend mit zwei Antennen ausger\u00fcstet werden
- Längere Triebzüge müssen mit zwei getrennten Fahrzeugausrüstungen projektiert werden.
- Steuerwagen müssen mit eigenen Fahrzeugausrüstungen projektiert werden. Es ist unmöglich das Antennenkabel über eine betrieblich trennbare Kupplung zu führen.

7.4.2 Fahrzeugparameter

Die Fahrzeugparameter werden gemäss dem Hersteller des Zugbeeinflussungssystems für jeden Fahrzeugtyp in Zusammenarbeit mit der Eisenbahnverkehrsunternehmung festgelegt.

Die Parameter umfassen unter anderem:

- Eisenbahnverkehrsunternehmungs- und ETCS-Kennungen
- Festlegung diverser Geschwindigkeitsschwellen
- Bremskurvendefinitionen
- diverse Reaktionszeiten
- maximale Streckenneigungen
- Betriebsartumschaltungen und Überwachungen
- Wechsel im Überwachungsbereich.

7.4.3 Inbetriebsetzung

Bei der Inbetriebsetzung jedes ausgerüsteten Fahrzeugs müssen die grundlegenden Funktionen der Systemkomponenten statisch geprüft werden. Dies umfasst:

- Antenne mittels Prüfbalise
- Magnetempfänger, wenn vorhanden mittels Prüfmagnet
- Bedien- und Anzeigegerät durch Überprüfung der korrekten Anzeigen
- Auswirkung auf dem Fahrzeug mittels Bremstest, dabei muss Zugkraft ausgeübt werden.

Zudem muss eine Probefahrt zur Stichprüfung, der in Abhängigkeit mit den im System verwirklichten Funktionen, erfolgen:

- korrekte Systemreaktion beim Befahren von Eurobalisen und Euroloops
- Empfang von Magneten
- zusätzliche digitale Ausgänge
- Betriebsartwechsel Adhäsion Zahnrad.

Seite 72 01.02.2018

7.5 Bremsmodelle

7.5.1 Grundsätze

Die in der Fahrzeugsoftware parametrisierten Bremsmodelle müssen die Bremseigenschaften der ganzen Zugkompositionen nachbilden. Zu bestimmen sind die Parameter von:

- Traktionsabschaltung die Zeit vom Einleiten einer Zwangsbremsung bis die Zugkraft abgebaut ist
- Reaktionszeit,
 die Summe der Durchschlagzeit bis zum Zugschluss und der Aufbauzeit der Bremskraft im Einzelfahrzeug
- Verzögerung, die mittlere Verzögerung während der Abbremsung.

Es können bis zu acht Bremsmodelle in der Fahrzeugsoftware programmiert werden. Die Bremsmodelle können für jede Fahrzeugserie unterschiedlich parametrisiert werden.

Die Parameter können für die Betriebsbremsung und für die Zwangsbremsung für jedes Bremsmodell unterschiedlich festgelegt werden. Die Betriebsbremsung dient als Unterstützung und kann nicht bei jedem Fahrzeugtyp verwirklicht werden. Sicherheitsrelevant ist nur die Zwangsbremsung.

Die Parameter werden bei Neigung 0 ‰ ermittelt. Die Bremskurvenberechnung im Fahrzeugrechner wird aufgrund der örtlichen Neigung fallweise angepasst.

7.5.2 Traktionsabschaltung

Bei einem elektrischen Triebfahrzeug wird die Zugkraft beim Einleiten der Zwangsbremsung z.B. mittels Hauptschalter-Auslösung oder Taktsperre der Stromrichter unmittelbar unterbrochen. In diesem Fall darf bei der Auslegung der Zugbeeinflussung die Zeit zur Traktionsabschaltung auf den kleinsten möglichen Wert projektiert werden. Dies gilt für alle projektierten Bremsmodelle. Bei Fahrzeugen, bei welchen die Traktion nicht unmittelbar unterbrochen werden kann (thermische Fahrzeuge), darf dieser Wert nicht vernachlässigt werden. Der Wert muss in diesem Fall individuell bestimmt werden.

Während der Traktionsabschaltung wird gerechnet, dass der Zug noch beschleunigt.

7.5.3 Reaktionszeit

Die Bremskraft baut sich mit dem Ansteigen des Bremszylinderdrucks progressiv nach dem Einleiten der Bremsung bis zum vollständigen Füllen der Bremszylinder im letzten Wagen des Zuges auf. Deshalb bildet die Reaktionszeit die Summe der angerechneten Durchschlag- und Aufbauzeit.

Die Durchschlagzeit im Zug ist die Zeit vom Einleiten der Zwangsbremsung bis der Hauptleitungsdruck beim letzten Fahrzeug sich so absenkt, dass die Bremsen ansprechen. Das bedeutet eine Absenkung um 0.5 bar gegenüber dem Nenndruck. Bei der Vakuumbremse wird eine Absenkung um 15 cmHg gegenüber dem Lösedruck berücksichtigt.

Bei Versuchen muss die Hauptleitung mit dem Zwangsbremsventil entleert werden. Die Durchschlagzeit kann gegenüber einer Schnellbremsung massiv länger ausfallen. Dies

ist der Fall, wenn der Durchlass des Zwangsbremsventils nicht optimal ist oder wenn bei älteren Fahrzeugen die Nachspeisung der Hauptleitung nicht unterbrochen wird.

Die Durchschlagzeit kann durch Versuche mit einem Zug der maximalen Länge im Stillstand ermittelt werden.

Die Durchschlagzeit kann mit dem Einsatz von Schnellbrems-Beschleunigungsventilen bzw. bei der Vakuumbremse mittels Schnellbremsventilen minimalisiert werden.

Um die Aufbauzeit im Einzelfahrzeug zu bestimmen, ist die Zeit bis der Bremszylinder zu 80 % gefüllt ist repräsentativer, als die vollständige Füllzeit des Bremszylinders. Gegen Schluss wird die Lufteinströmung gedrosselt. Die Aufbauzeit kann durch Versuche im Stillstand mit einem Einzelfahrzeug ermittelt werden.

Bei unterschiedlichen Fahrzeuggattungen müssen die Fahrzeuge berücksichtigt werden, welche eine längere Aufbauzeit haben (z.B. Güterwagen).

Während der Reaktionszeit wird gerechnet, dass der Zug rollt.

7.5.4 Verzögerung

Die Berechnung der Bremskurven erfolgt mit der projektierten mittleren Verzögerung.

Diese mittlere Verzögerung darf nicht mit den Bremsprozenten (Bremsgewichtshundertstel) gleichgesetzt werden, weil im Bremsprozentwert eine Zeit für den Aufbau der Bremswirkung enthalten ist. Nach AB-EBV Artikel 52.2, Ziffer 6.1.1 gilt die Grundlage "100 Bremsgewichtshundertstel entsprechen einer mittleren Verzögerung von 1 m/s² bei einer Bremsung aus 50 km/h auf horizontaler Strecke, berechnet aus der Ausgangsgeschwindigkeit und dem Bremsweg bis zum Stillstand". Damit wird der gesamte Bremsweg vom Einleiten der Bremsung bis zum Stillstand berücksichtigt. Bei einer Bremszylinderfüllzeit von 2.5 s muss die darauf folgende Verzögerung durchschnittlich 1.6 m/s2 betragen, um den gleichen Bremsweg von 96 m einzuhalten.

Die Verzögerung wird als konstante Verzögerung während der Abbremsung ab Ablauf der Reaktionszeit bis zum Stillstand angenommen.

Seite 74 01.02.2018

7.5.5 Vorgehen bei einheitlich gebildeten Zügen

Bei einheitlich gebildeten Zügen (Triebzüge in Einzel- oder Mehrfachtraktion, Pendelzüge aus einheitlichem Rollmaterial) kann das anzuwendende Bremsmodell auf die Eigenschaften der eingesetzten Fahrzeuge abgestimmt werden. Bei Mehrfachtraktion und Pendelzügen ist die längste Komposition zu berücksichtigen.

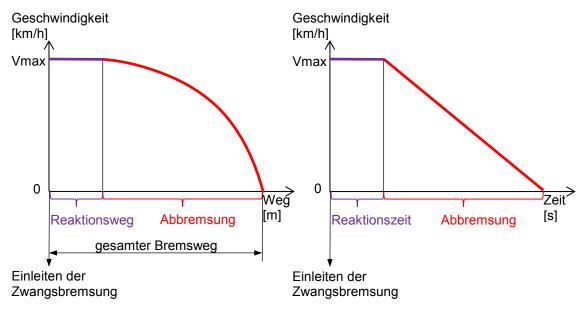


Abbildung 44: Zwangsbremsung einheitlicher Zug

Das Bremsmodell kann aufgrund von Ergebnissen von Bremsversuchen mit der entsprechenden Komposition festgelegt werden. Es darf auch auf die Ergebnisse von Bremsversuchen bei der Fahrzeugzulassung zurückgegriffen werden.

Vorerst muss die Reaktionszeit ermittelt werden. Als Ausgangsgeschwindigkeit wird die Fahrzeug-Höchstgeschwindigkeit ausgewählt. Die mittlere Verzögerung während der Abbremsung wird wie folgt berechnet:

$$a = \frac{{v_0}^2}{2(s - v_0 \times t_0)}$$

a mittlere Verzögerung [m/s2]

 v_0 Ausgangsgeschwindigkeit [m/s]

 t_0 Reaktionszeit = Aufbauzeit [s]

s gesamter Bremsweg [m]

7.5.6 Vorgehen bei unterschiedlich gebildeten Zügen

Bei unterschiedlich gebildeten Zügen müssen die Bremsmodelle auf dem Bremsverhältnis aufgebaut werden. Das bei der Zugbildung ermittelte Bremsverhältnis entspricht der Wirksamkeit der im Zug vorhandenen Bremsen. Jedes Bremsmodell wird einer bestimmten Bremsreihe zugeordnet. Die Reaktionszeit wird unter Berücksichtigung der längsten Züge festgelegt. Es werden die gleichen Bremsmodelle unabhängig der Triebfahrzeugtypen projektiert.

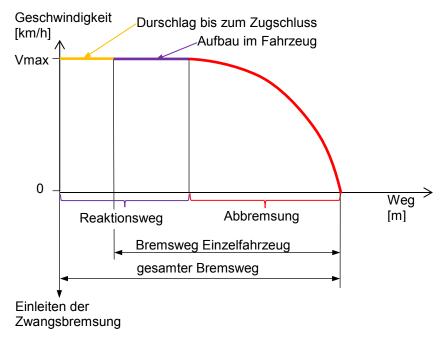


Abbildung 45: Zwangsbremsung gemischter Zug

Vorerst müssen die Durchschlagszeit bis zum Zugschluss sowie die Aufbauzeit im Einzelfahrzeug ermittelt werden. Der Bremsweg des Einzelfahrzeuges wird nach den Bremsbewertungskennlinien AB-EBV, AB 52.2 Blatt 9 für das dem Bremsmodell zugeordnete Bremsverhältnis ermittelt. Die Höchstgeschwindigkeit der Zugreihe wird als Ausgangsgeschwindigkeit für die Bestimmung definiert.

Die mittlere Verzögerung während der Abbremsung wird wie folgt berechnet:

$$a = \frac{{v_0}^2}{2(s_t - v_0 \times (t_0 + t_1))}$$

a mittlere Verzögerung [m/s2]

 v_0 Ausgangsgeschwindigkeit [m/s]

t₀ Aufbauzeit im Einzelfahrzeug [s]

t₁ Durschlagzeit bis zum Zugschluss [s]

 s_t gesamter Bremsweg [m]

7.5.7 Verkürzung der Reaktionszeit

Es ist möglich die Reaktionszeit nur teilweise anzurechnen. Die berechnete mittlere Verzögerung wird demzufolge leicht vermindert. Ab Höchstgeschwindigkeit bleibt der gesamte Bremsweg so unverändert. Ab tieferer Geschwindigkeit wird tendenziell ein kürzerer Bremsweg berechnet.

Die Verkürzung der Reaktionszeit ermöglicht eine rassigere Fahrt in der Annäherung zum Signal.

In diesem Fall muss bei Bremsversuchen ab niedrigerer Geschwindigkeit geprüft werden, ob der Halt vor dem projektierten Halteort immer gewährleistet bleibt.

Seite 76 01.02.2018

7.5.8 Verifizierung der Parameter

Die Bremsparameter sind bei Bremsversuchen zu verifizieren. Die dabei eingesetzten Fahrzeuge sollen für den effektiv im Betrieb zutreffenden Unterhaltszustand repräsentativ sein. Der Versuchszug soll mit der maximalen Länge zusammengestellt sein.

Systematische Bremsversuche sollen in einem Abschnitt mit der maximalen Streckengeschwindigkeit in der Annäherung von einem Hauptsignal vorgenommen werden. Die Neigung im Bremsweg muss möglichst klein und unbedingt konstant sein.

Das Halt zeigend Hauptsignal wird angefahren:

- mit der Höchstgeschwindigkeit
- mit 2-3 verschiedenen tieferen Geschwindigkeiten
- gegebenenfalls mit verschiedenen repräsentativen Bremsmodellen. Dabei müssen die Bremsen im Zug entsprechend konfiguriert sein (z.B. Bremsen einzelner Fahrzeuge gezielt ausgeschaltet).

Die Einleitung der Bremsung erfolgt durch die Zugbeeinflussung beim Überschreiten der Bremskurve. Gemessen wird:

- der Verlauf der Geschwindigkeit während der Abbremsung
- der genaue Halteort in Bezug zum projektierten Halteort.

7.6 Betriebsvorschriften

Eine Betriebsvorschrift über das System ist durch den Betreiber herauszugeben. Zu regeln sind mindestens die Bedienung und die fahrdienstlichen Zusammenhänge unter Berücksichtigung der schweizerischen Fahrdienstvorschriften. Hauptanwender dieser Vorschrift sind die Lokführer. Die Systemführung stellt eine Mustervorschrift zur Verfügung, die durch jeden Betreiber übernommen und den eigenen Verhältnissen angepasst werden kann.

Die Betriebsvorschriften der einzelnen Sicherungsanlagen sind anzupassen. Insbesondere müssen die Balisengruppen und die Euroloops auf den beigelegten Plänen aufgeführt werden.

Unterhaltsvorschriften des Systemlieferants sind zu übernehmen oder den eigenen Verhältnissen anzupassen.

7.7 Schulungen

Die Lokführer sind vor der Inbetriebnahme des ersten ausgerüsteten Fahrzeugs zu schulen. Die Schulung ist auf die Etappierung der Migration abzustimmen. Zum Beispiel:

- erste Schulung vor der Inbetriebnahme des ersten mit Zugbeeinflussung nach Standard ZBMS ausgerüsteten Fahrzeuges. Dabei werden die Systemgrundsätze und die Bedienung in der punktuellen Überwachung vermittelt.
- zweite Schulung vor der Inbetriebnahme der ersten Streckenausrüstungen mit kontinuierlicher Überwachung. Alle Systemfunktionen und die gesamte Bedienung werden unterrichtet.
- dritte Schulung nach den ersten Betriebserfahrungen als Weiterbildung um die Systemkenntnisse zu vertiefen.

Das Unterhaltspersonal der Sicherungsanlagen und der Fahrzeuge ist durch den Systemlieferanten zu schulen.

Seite 78 01.02.2018